Answer:
Explanation:
<u>1) Equilibrium equation (given):</u>
- 2CH₂Cl₂ (g) ⇄ CH₄ (g) + CCl₄ (g)
<u>2) Write the concentration changes when some concentration, A, of CH₂Cl₂ (g) sample is introduced into an evacuated (empty) vessel:</u>
- 2CH₂Cl₂ (g) ⇄ CH₄ (g) + CCl₄ (g)
A - x x x
<u>3) Replace x with the known (found) equilibrium concentraion of CCl₄ (g) of 0.348 M</u>
- 2CH₂Cl₂ (g) ⇄ CH₄ (g) + CCl₄ (g)
A - 0.3485 0.348 0.348
<u>4) Write the equilibrium constant equation, replace the known values and solve for the unknown (A):</u>
- Kc = [ CH₄ (g) ] [ CCl₄ (g) ] / [ CH₂Cl₂ (g) ]²
- A² = 56.0 / 0.348² = 462.
To calculate atomic mass, you have to take to weighted average of the isotopes' masses. What that means is M = RA*106 + (1 – RA)*104, where RA is relative abundance expressed in decimal form. If you simplify the right side of that equation, you get M = 2*RA + 104. Doing a little more algebra yields RA = (M –104)/2 = (104.4 – 104)/2 = 0.4 / 2 = 0.2, which is 20%. So the answer is B.
Explanation:
One example of a chemical reaction is the rusting of a steel garbage can. That rusting happens because the iron (Fe) in the metal combines with oxygen (O2) in the atmosphere. Chemical bonds are created and destroyed to finally make iron oxide (Fe2O3).
Answer:
Here's what I get
Explanation:
1. Complete structural formula
Methylpropane consists of a chain of three carbons with another carbon atom attached to the middle carbon. Enough H atoms are added to give each C atom a total of four bonds.
The complete structural formula is shown below (There is a C atom at each intersection).
2. Condensed structural formula
A condensed structural formula is designed to be typed on one line.
The molecule has three CH₃ groups attached to a single carbon atom, so the condensed structural formula is
(CH₃)₃CH
The formula is also often written CH₃CH(CH₃)CH₃ and as (CH₃)₂CHCH₃.