Answer:
The concentration of chloride ions in the final solution is 3 M.
Explanation:
The number of moles present in a solution can be calculated as follows:
number of moles = concentration in molarity * volume
In 100 ml of a 2 M KCl solution, there will be (0.1 l * 2mol/l) 0.2 mol Cl⁻
For every mol of CaCl₂, there are 2 moles of Cl⁻, then, the number of moles of Cl⁻ in 50 l of a 1.5 M solution will be:
number of moles of Cl⁻ = 2 * number of moles of CaCl₂
number of moles of Cl⁻ = 2 ( 50 l * 1.5 mol / l ) = 150 mol Cl⁻
The total number of moles of Cl⁻ present in the solution will be (150 mol + 0.2 mol ) 150.2 mol.
Assuming ideal behavior, the volume of the final solution will be ( 50 l + 0.1 l) 50.1 l. The molar concentration of chloride ions will be:
Concentration = number of moles of Cl⁻ / volume
Concentration = 150.2 mol / 50.1 l = 3.0 M
B
All cells new oxygen and blood is a way for them to get it
Answer:
30 moles
Explanation:
Water is H2O, meaning there is 2 Hydrogen atoms and 1 Oxygen atom. Oxygen is O2, because it is a diatomic molecule. (Hydrogen is also a diatomic molecule, so H2)
The equation, balanced, would have to be: 2H2 + O2 -----> 2H2O
I multiply 15 moles O2 by the molar ratio of (hydrogen/oxygen)
15 mol. O2 * (2 mol. H2/1 mol O2) = 30 moles of water