Answer:
The gas was N₂
Explanation:
V = 3.6L
P = 2.0 atm
T = 24.0°C = 297K
R = 0.0821 L.atm/K.mol
m = 8.3g
M = molar mass = ?
Using ideal gas equation;
PV = nRT
n = no. Of moles = mass / molar mass
n = m/M
PV = m/M * RT
M = mRT / PV
M = (8.3*0.0821*297) / (2.0*3.6)
M = 28.10
Since X is a diatomic molecule
M = 28.10 / 2 = 14.05 g/mol
M = Nitrogen
X = N₂
Answer:
(1) cathode: Y
(2) anode X
(3) electrons in the wire flow toward: Y
(4) electrons in the wire flow away from: X
(5) anions from the salt bridge flow toward X
(6) cations from the salt bridge flow toward Y
(7) gains mass: Y
(8) looses mass X
Explanation:
The voltaic cell uses two different metal electrodes, each in an electrolyte solution. The anode will undergo oxidation and the cathode will undergo reduction. The metal of the anode will oxidize, going from an oxidation state of 0 (in the solid form) to a positive oxidation state, and it will become an ion. At the cathode, the metal ion in the solution will accept one or more electrons from the cathode, and the ion’s oxidation state will reduce to 0. This forms a solid metal that deposits on the cathode. The two electrodes must be electrically connected to each other, allowing for a flow of electrons that leave the metal of the anode and flow through this connection to the ions at the surface of the cathode. This flow of electrons is an electrical current that can be used to do work, such as turn a motor or power a light.
<u>Answer:</u> The density of liquid is 
<u>Explanation:</u>
We are given:
Mass of cylinder,
= 65.1 g
Mass of liquid and cylinder combined, M = 120.5 g
Mass of liquid,
= 
To calculate density of a substance, we use the equation:

We are given:
Mass of liquid = 55.4 g
Volume of liquid = 49.3 mL =
(Conversion factor:
)
Putting values in above equation, we get:

Hence, the density of liquid is 
Answer:
A. releases a large amount of heat
Explanation:
A reaction is said to be spontaneous if it can proceed on its own without the addition of external energy. A spontaneous reaction is not determined by the length of time, because some spontaneous reactions are completed after a long period of time. They are exothermic in nature. An example is the conversion of graphite to carbon which takes a long period of time to complete. Spontaneous reactions are known to increase entropy in a system. Entropy is the rate of disorder in a system.
In the combustion of fire, energy is released to the surroundings as there is a decrease in energy. This is an example of a spontaneous reaction because it is an exothermic reaction, which causes an increase in entropy and a decrease in energy.
The answer is D. A compound