Answer : The value of equilibrium constant for this reaction at 262.0 K is 
Explanation :
As we know that,

where,
= standard Gibbs free energy = ?
= standard enthalpy = -45.6 kJ = -45600 J
= standard entropy = -125.7 J/K
T = temperature of reaction = 262.0 K
Now put all the given values in the above formula, we get:


The relation between the equilibrium constant and standard Gibbs free energy is:

where,
= standard Gibbs free energy = -12666.6 J
R = gas constant = 8.314 J/K.mol
T = temperature = 262.0 K
K = equilibrium constant = ?
Now put all the given values in the above formula, we get:


Therefore, the value of equilibrium constant for this reaction at 262.0 K is 
First you need to calculate the molar mass of H2O. To do that, look at the periodic table and add up the AMUs (atomic mass units)
H = 1.01
O = 16.0
1.01 • 2 + 16.0 = 18.02
Next, use stoichiometry to convert grams into moles. To do that, divide 814.504g by the number of grams in one mole of H2O.
814.504 ÷ 18.02 = 45.2 moles
There are 45.2 moles in 814.504 grams of H2O.
We balance the given reactions above by following the rules in balancing redox reactions in acidic or basic solutions. Balance the atoms aside from the O and H atoms. Then we balance the Os and Hs by adding H2O or H+. Finally, we balance the total charge of the reactant and product by adding e-. We do as follows:
<span>A) H2O2 + Fe 2+ ---> Fe 3+ + H2O (in the acidic solution)
</span><span> 2H+ + </span>H2O2 + Fe 2+ ---> Fe 3+ + 2H2O
e- + 2H+ + H2O2 + Fe 2+ ---> Fe 3+ + 2H2O
<span>
C) CN- + MnO4- ---> CNO- +MnO2 (in basic solution)
</span> CN- + MnO4- ---> CNO- +MnO2 + H2O
2H+ + CN- + MnO4- ---> CNO- +MnO2 + H2O
2OH- + 2H+ + CN- + MnO4- ---> CNO- +MnO2 + H2O + 2OH-
2H2O + CN- + MnO4- ---> CNO- +MnO2 + H2O + 2OH-
e- + H2O + CN- + MnO4- ---> CNO- +MnO2 + 2OH-
<span>
E) S2O2/3- + I2 ---> I- + S4O2/6- (in acidic solution)
2</span>S2O2/3- + I2 ---> 2I- + S4O2/6-
4H+ + 2S2O2/3- + I2 ---> 2I- + S4O2/6- + 2H2O
6e- + 4H+ + 2S2O2/3- + I2 ---> 2I- + S4O2/6- + 2H2O
Answer:
Option C is correct.
t = 1.95 billion years.
Explanation:
Radioactive decay follows a first order reaction kinetics.
On solving the dynamic equation (the differential equation), this is obtained
C(t) = C₀ e⁻ᵏᵗ
C(t) = amount of radioactive material remaining after time t = 37.5%
C₀ = Initial amount of radioactive material = 100%
t = time that has passed = ?
k = decay constant.
For a first order reaction, the decay constant is related to the half life through the relation
k = (In 2)/T
T = half life = 1.38 billion years
k = (In 2)/1.38
k = 0.5023 per billion years.
C(t) = C₀ e⁻ᵏᵗ
0.375 = e⁻ᵏᵗ
e⁻ᵏᵗ = 0.375
In e⁻ᵏᵗ = In 0.375 = -0.981
-kt = -0.981
t = (0.981/0.5023) = 1.95 billion years.
Hope this Helps!!!
In CO2 the dipole moments cancel out, while in H20, they don’t, making it polar. In C02, both oxygens are more electronegative than the carbon, but they pull equally apart from one another, so there is no dipole moment (the pulls cancel)