Answer:
Explanation:
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
Explanation:
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Chemical equation:
Mg + HCl → H₂ + MgCl₂
24 g + 36.5 g = 2 g+ 95 g
60.5 g = 97 g
The reaction does not hold the law of conservation of mass, because it is not balanced.
Balanced chemical equation:
Mg + 2HCl → H₂ + MgCl₂
24 g + 73 g = 2 g+ 95 g
97 g = 97 g
this equation completely follow the law of conservation of mass.
Answer:
![[H^+]=0.00332M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.00332M)
Explanation:
Hello,
In this case, considering the dissociation of valeric acid as:

Its corresponding law of mass action is:
![Ka=\frac{[H^+][C_5H_9O_2^-]}{[HC_5H_9O_2]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH%5E%2B%5D%5BC_5H_9O_2%5E-%5D%7D%7B%5BHC_5H_9O_2%5D%7D)
Now, by means of the change
due to dissociation, it becomes:

Solving for
we obtain:

Thus, since the concentration of hydronium equals
, the answer is:
![[H^+]=x=0.00332M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dx%3D0.00332M)
Best regards.
Answer:
Water does not remain when an insoluble substance is added
Answer:
- answer c is the answer
Explanation:
<h3>please mark me as brilliant and follow me</h3>