Answer:
The area of the given rectangular index card = <u>9677.4 mm²</u>
Explanation:
Area is defined as the space occupied by a two dimensional shape or object. The SI unit of area is square metre (m²).
<u>The area of a rectangle</u> (A) = length (l) × width (w)
Given dimensions of the rectangle: Length (l) = 5.0 inch, Width (w) = 3.0 inch
Since, 1 inch = 25.4 millimetres (mm)
Therefore, l = 5 × 25.4 = 127 mm, and w = 3 × 25.4 = 76.2 mm
Therefore, <u>the area of the given rectangular index card</u> = A= l × w = 127 mm × 76.2 mm = <u>9677.4 mm²</u>
Answer:
Na
Explanation:
because sodium has 1 electrons so it loses it to be stable and so have positive charge of 1
Answer:
1.
work out the mean mode median and range
Explanation:
Answer:
productivity and water depth
Explanation:
The productivity and the depth of water are both equally important as it directly affects the accumulation of biogenic sediments such as the siliceous ooze and calcareous ooze. In the equator and the coastal upwelling areas, and at the site of divergence of oceans, there occurs a high rate and amount of productivity, and these are considered to be the primary productivity.
The siliceous oozes are a good indicator of extensively high productivity in comparison to the carbonate oozes. The main reason behind this is that the silica can be easily dissolved in the surface water. On the other hand, the carbonates dissolve at a relatively lower ocean water depth, so there requires a high amount of surface productivity in order to allow these siliceous oozes to reach the ocean bottom.
Thus, the water depth and productivity, both are considered as the limiting factor in determining the accumulation of biogenic oozes.
Answer:
<em>a)</em> <em>1.392 x 10^6 g/cm^3</em>
<em>b) 8.69 x 10^7 lb/ft^3</em>
<em></em>
Explanation:
mass of the star m = 2.0 x 10^36 kg
radius of the star (assumed to be spherical) r = 7.0 x 10^5 km = 7.0 x 10^8 m
The density of substance ρ = mass/volume
The volume of the star = volume of a sphere = 
==> V =
= 1.437 x 10^27 m^3
density of the star ρ = (2.0 x 10^36)/(1.437 x 10^27) = 1.392 x 10^9 kg/m^3
in g/cm^3 = (1.392 x 10^9)/1000 = <em>1.392 x 10^6 g/cm^3</em>
in lb/ft^3 = (1.392 x 10^9)/16.018 = <em>8.69 x 10^7 lb/ft^3</em>