Who cares about this question
Answer:
See below!
Explanation:
A. The picture of the graph is attached. You can tell the amount of protons in an element by looking at the periodic table. The elements are ordered by the number of protons in an element.
B. Carbon and silicon are at the peaks of the chart. The peak is the highest point in a graph.
C. The elements belong to the non-metal group.
D. The halogens are non-metals, and their vapors are colorless.
The halogens are toxic to humans.
Halogen molecules are made of two atoms; they are diatomic.
Halogens react with non-metals to form crystalline compounds that are salts.
The halogens get less reactive going down the group on the periodic table.
Halogens can bleach vegetable dyes and kill bacteria.
E. The picture of the table is attached. To figure which numbers to put where, you need to pay attention to the other numbers. The halogens follow a trend with each of these properties. You have to put in the numbers that fit in among the other numbers.
The normality of the H₂SO₄ that reacted with 25cc of 5 % NaOH solution is 1.1 N.
<h3>What is the molarity of 5% NaOH?</h3>
The molarity of 5% NaOH is 1.32 M
25 cc of NaOH neutralized 30cc of H₂SO₄ solution.
Equation of reaction is given below:
- 2 NaOH + H₂SO₄ ---> Na₂SO₄ + 2 H₂O
Molarity of H₂SO₄ = 1.32 x 1 x 25/(30 x 2) = 0.55 M
- Normality = Molarity × moles of H⁺ ions per mole of acid
moles of H⁺ ions per mole of H₂SO₄ = 2
Normality of H₂SO₄ = 0.55 x 2 = 1.1 N
In conclusion, the normality of an acid is determined from the molarity and the moles of H⁺ ions per mole of acid.
Learn more about normality at: brainly.com/question/22817773
#SPJ1
Answer:
The Sun is 864,400 miles (1,391,000 kilometers) across. This is about 109 times the diameter of Earth. The Sun weighs about 333,000 times as much as Earth. It is so large that about 1,300,000 planet Earths can fit inside of it.
Cohesion holds hydrogen bonds together to create surface tension on water. Since water is attracted to other molecules, adhesive forces pull the water toward other molecules.