The answer is C. 4.6 billion years. Hoped I helped. :)
Answer:
a) 0.714g of bicarbonate of soda are required.
b) 0.221g of Al(OH)₃ are required
Explanation:
The reactions of HCl with bicarbonate of soda and aluminium hydroxide are:
HCl + NaHCO₃ → H₂O + NaCl + CO₂
3 HCl + Al(OH)₃ → 3H₂O + AlCl₃
The moles of HCl that we need neutralize are:
50mL = 0.050L * (0.17mol / L) = 0.0085 moles HCl
To solve these problem we need to find the moles of the antacid using the chemical reaction and its mass using its molar mass;
<em>a) </em><em>Moles NaHCO₃ = Moles HCl = 0.0085 moles </em>
The mass is -Molar mass NaHCO₃: -84g/mol-
0.0085 moles * (84g / mol) = 0.714g of bicarbonate of soda are required
b) 0.0085 moles HCl * (1mol Al(OH)₃ / 3mol HCl) = 2.83x10⁻³ moles Al(OH)₃
The mass is -Molar mass: 78g/mol-:
2.83x10⁻³ moles Al(OH)₃ * (78g/mol) =
<h3>0.221g of Al(OH)₃ are required</h3>
Answer:
Mass percent N₂ = 89%
Mass percent H₂ = 11%
Explanation:
First we <u>use PV=nRT to calculate n</u>, which is the total number of moles of nitrogen and hydrogen:
- 1.03 atm * 7.45 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ * 305 K
So now we know that
- MolH₂ + MolN₂ = 0.307 mol
and
- MolH₂ * 2 g/mol + MolN₂ * 28 g/mol = 3.49 g
So we have a <u>system of two equations and two unknowns</u>. We use algebra to solve it:
Express MolH₂ in terms of MolN₂:
- MolH₂ + MolN₂ = 0.307 mol
Replace that value in the second equation:
- MolH₂ * 2 g/mol + MolN₂ * 28 g/mol = 3.49
- (0.307-MolN₂) * 2 + MolN₂ * 28 = 3.49
- 0.614 - 2MolN₂ + 28molN₂ = 3.49
Now we calculate MolH₂:
- MolH₂ + MolN₂ = 0.307 mol
Finally, we convert each of those mol numbers to mass, to <u>calculate the mass percent</u>:
- N₂ ⇒ 0.111 mol * 28 g/mol = 3.108 g N₂
- H₂ ⇒ 0.196 mol * 2 g/mol = 0.392 g H₂
Mass % N₂ = 3.108/3.49 * 100% = 89.05% ≅ 89%
Mass % H₂ = 0.392/3.49 * 100% = 11.15% ≅ 11%
C3H8 and CH4 are two compounds made from the same two elements, C and H. The ratios of C and H for both are round numbers.
Law of multiple proportions states that when two elements combine with each other to form more than one compound, the weights of one element that combine with a fixed weight of the other are in a ratio of small whole numbers.
So the ans is C) Law of Multiple Proportions
Answer:
The specific heat of the metal is 0,50 J/gºC
Explanation:
Assume that no heat is lost to the surroundings
(Q = m . C . ΔT)metal + (Q = m . C . ΔT)water = 0
Let's replace our values.
55g . C . (18,7ºC - 75ºC) + 100g . 4,184 J/g·°C . (18,7ºC - 15ºC) = 0
55g . C . -56,3 ºC + 418,4J/·°C . 3,7ºC = 0
-3096,5 gºC . C + 1548,08 J = 0
1548,08 J = 3096,5 gºC . C
1548,08 J / 3096,5 gºC = C = 0,50 J/gºC