So this is easy to calculate when you split the velocity into x and y components. The x component is going to equal cos(53) * 290 and the y component is going to equal sin(53)*290.
The x location therefore is 290*cos(53)*35 = 6108.4m
The y location needs to factor in the downwards acceleration of gravity too, which is 9.81m/s^2. We need the equation dist. = V initial*time + 0.5*acceleration*time^2.
This gives us d=290*sin(53)*35 + (0.5*-9.81*35^2)=2097.5m
So your (x,y) coordinates equals (6108.4, 2097.5)
Answer:
When heat is added to a substance, the molecules and atoms vibrate faster. As atoms vibrate faster, the space between atoms increases. The motion and spacing of the particles determines the state of matter of the substance. The end result of increased molecular motion is that the object expands and takes up more space.
Explanation:
Answer:
0
Explanation:
because during free fall we experience wieghtlessness
Answer:
Tissues that are damaged or injured.
Explanation:
Dystrophic calcification involves the deposition of calcium in soft tissues despite no disturbance in the calcium metabolism, and this is often seen at damaged tissues.
Examples of areas in the body where dystrophic calcification can occur include atherosclerotic plaques and damaged heart valves.
Answer:
(a) f= 622.79 Hz
(b) f= 578.82 Hz
Explanation:
Given Data
Frequency= 600 Hz
Distance=1.0 m
n=120 rpm
Temperature =20 degree
Before solve this problem we need to find The sound generator moves on a circular with tangential velocity
So
Speed of sound is given by
c = √(γ·R·T/M)
............in an ideal gas
where γ heat capacity ratio
R universal gas constant
T absolute temperature
M molar mass
The speed of sound at 20°C is
c = √(1.40 ×8.314472J/molK ×293.15K / 0.0289645kg/mol)
c= 343.24m/s
The sound moves on a circular with tangential velocity
vt = ω·r.................where
ω=2·π·n
vt= 2·π·n·r
vt= 2·π · 120min⁻¹ · 1m
vt= 753.6 m/min
convert m/min to m/sec
vt= 12.56 m/s
Part A
For maximum frequency is observed
v = vt
f = f₀/(1 - vt/c )
f= 600Hz / (1 - (12.56m/s / 343.24m/s) )
f= 622.789 Hz
Part B
For minimum frequency is observed
v = -vt
f = f₀/(1 + vt/c )
f= 600Hz / (1 + (12.56m/s / 343.24m/s) )
f= 578.82 Hz