Answer:
Explanation:
Given that,
Initial angular velocity is 0
ωo=0rad/s
It has angular velocity of 11rev/sec
ωi=11rev/sec
1rev=2πrad
Then, wi=11rev/sec ×2πrad
wi=22πrad/sec
And after 30 revolution
θ=30revolution
θ=30×2πrad
θ=60πrad
Final angular velocity is
ωf=18rev/sec
ωf=18×2πrad/sec
ωf=36πrad/sec
a. Angular acceleration(α)
Then, angular acceleration is given as
wf²=wi²+2αθ
(36π)²=(22π)²+2α×60π
(36π)²-(22π)²=120πα
Then, 120πα = 8014.119
α=8014.119/120π
α=21.26 rad/s²
Let. convert to revolution /sec²
α=21.26/2π
α=3.38rev/sec
b. Time Taken to complete 30revolution
θ=60πrad
∆θ= ½(wf+wi)•t
60π=½(36π+22π)t
60π×2=58πt
Then, t=120π/58π
t=2.07seconds
c. Time to reach 11rev/sec
wf=wo+αt
22π=0+21.26t
22π=21.26t
Then, t=22π/21.26
t=3.251seconds
d. Number of revolution to get to 11rev/s
∆θ= ½(wf+wo)•t
∆θ= ½(0+11)•3.251
∆θ= ½(11)•3.251
∆θ= 17.88rev.
Answer:
because when squeezing you are increasing pressure within the bottle and there is less pressure on the outside
Explanation:
It is given that,
A mass oscillates up and down on a vertical spring with an amplitude of 3 cm and a period of 2 s. It is a case of simple harmonic motion. If the amplitude of a wave is T seconds, then the distance cover by that object is 4 times the amplitude.
In 2 seconds, distance covered by the mass is 12 cm.
In 1 seconds, distance covered by the mass is 6 cm
So, in 16 seconds, distance covered by the mass is 96 cm
So, the distance covered by the mass in 16 seconds is 96 cm. Hence, this is the required solution.
Moment of inertia of single particle rotating in circle is I1 = 1/2 (m*r^2)
The value of the moment of inertia when the person is on the edge of the merry-go-round is I2=1/3 (m*L^2)
Moment of Inertia refers to:
- the quantity expressed by the body resisting angular acceleration.
- It the sum of the product of the mass of every particle with its square of a distance from the axis of rotation.
The moment of inertia of single particle rotating in a circle I1 = 1/2 (m*r^2)
here We note that the,
In the formula, r being the distance from the point particle to the axis of rotation and m being the mass of disk.
The value of the moment of inertia when the person is on the edge of the merry-go-round is determined with parallel-axis theorem:
I(edge) = I (center of mass) + md^2
d be the distance from an axis through the object’s center of mass to a new axis.
I2(edge) = 1/3 (m*L^2)
learn more about moment of Inertia here:
<u>brainly.com/question/14226368</u>
#SPJ4