Raised temperature, decreased volume.
Temperature and Pressure are directly related, when volume increases so does the your pressure.
Volume and Pressure are indirectly related. When volume decreases, your pressure will increase.
Answer:
Carnivorous plants are easy to grow, if you follow a few, simple rules.
Wet all of the time.
Mineral-free water.
Mineral-free soil.
Lots of light.
Wet all of the time.
Carnivorous plants are native to bogs and similar nutrient-poor habitats. As a consequence, the plants live in conditions that are constantly damp. To grow healthy carnivorous plants, it is important to duplicate their habitat as closely as possible. Keep the soil wet or at least damp all of the time. The easiest way to do this is use the tray method. Set the pots in a tray or saucer, and keep water in it at all times. Pitcher plants can grow in soggy soil with the water level in the saucer as deep as 1/2 the pot, but most carnivorous plants prefer damp to wet soil, so keep the water at about 1/4 inch and refill as soon as it is nearly gone. Water from below, by adding water to the tray, rather than watering the plant. This will avoid washing away the sticky muscilage of the sundews and butterworts and keep from closing the flytraps with a false alarm.
Mineral-free water.
Always use mineral-free water with your carnivorous plants, such as rainwater or distilled water. Try keeping a bucket near the downspout to collect rainwater. Distilled water can be purchased at the grocery store, but avoid bottled drinking water. There are simply too many minerals in it. The condensation line from an air conditioner or heat pump is another source of mineral-free water. Reverse-osmosis water is fine to use. Carnivorous plants grow in nutrient poor soils. The minerals from tap water can “over-fertilize” and “burn out” the plants. In a pinch, tap water will work for a short while, but flush out the minerals with generous portions of rainwater, when it is available.
Mineral-free soil.
The nutrient poor soils to which the carnivorous plants have adapted are often rich in peat and sand. This can be duplicated with a soil mixture of sphagnum peat moss and horticultural sand. Be sure to check the peat label for sphagnum moss. Other types will not work well. The sand should be clean and washed. Play box sand is great, and so is horticultural sand. Avoid “contractor’s sand” which will contain fine dust, silt, clay and other minerals. Never use beach sand or limestone based sand. The salt content will harm the plants. The ratio of the mix is not critical, 1 part peat with 1 part sand works well for most carnivorous plants. Flytraps prefer a bit more sand, and nepenthes prefer much more peat. Use plastic pots, as terra cotta pots will leach out minerals over time and stress your plants.
Explanation:
Kayo na Po bahala magpaigsi
Answer:
The atom must lose its three extra electrons to make the atom over all neutral.
Explanation:
The three subatomic particles construct an atom electron, proton and neutron. A neutral atom have equal number of proton and electron. In other words we can say that negative and positive charges are equal in magnitude and cancel the each other. For example if neutral atom has 6 protons than it must have 6 electrons.
If an atom have -3 charge it means three more electrons are added. In order to make the atom overall neutral three more electrons must be removed so that negative and positive charge becomes equal and cancel the effect of each other and make the atom neutral.
Electron:
The electron is subatomic particle that revolve around outside the nucleus and has negligible mass. It has a negative charge.
Symbol= e⁻
Mass= 9.10938356×10⁻³¹ Kg
It was discovered by j. j. Thomson in 1897 during the study of cathode ray properties.
Proton and neutron:
While neutron and proton are present inside the nucleus. Proton has positive charge while neutron is electrically neutral. Proton is discovered by Rutherford while neutron is discovered by James Chadwick in 1932.
Symbol of proton= P⁺
Symbol of neutron= n⁰
Mass of proton=1.672623×10⁻²⁷ Kg
Mass of neutron=1.674929×10⁻²⁷ Kg
Answer:
Cell is defined as the smallest unit or basic unit of life.