Put it on your tongue wait 45 minutes and see if you start tripping balls.
Answer:

Explanation:
Hello,
In this case, the undergoing chemical reaction is:

Thus, in terms of pressures, the rate becomes:

Thus, the rate of change for the partial pressure of ammonia turns out:
![r_{NH_3}=2*(-r_{N_2H_4})\\r_{NH_3}=2*[-(-70torr/h)]\\r_{NH_3}=140torr/h](https://tex.z-dn.net/?f=r_%7BNH_3%7D%3D2%2A%28-r_%7BN_2H_4%7D%29%5C%5Cr_%7BNH_3%7D%3D2%2A%5B-%28-70torr%2Fh%29%5D%5C%5Cr_%7BNH_3%7D%3D140torr%2Fh)
The rate of decrease of partial pressure of urea is taken negative as it is a reactant whereas ammonia a product which has 2 as its stoichiometric coefficient.
Best regards.
The following statements from the paragraph are true. Protons have a mass that contributes significantly to the mass of the atomic nucleus. Neutrons have a mass that contributes significantly to the mass of the atomic nucleus. Electrons have a very low mass and are not found in the nucleus but instead are found in surrounding orbits.
Answer is: volume of CO₂ is 0,113 dm³.
Ideal gas law = pV = nRT.
p = 850 PSI = 5860543,6992 Pa.
Psi <span>is the abbreviation of pound per square inch.
T = 21</span>°C = 294,15 K.
n = 0,273 mol.
R = 8,314 J/K·mol.
V = nRT ÷ p
V = 0,273 mol · 8,314 J/K·mol · 294,15 K ÷ 5860543,6992 Pa.
V = 0,00011 m³ = 0,113 dm³.