Volume of pyramid:

A - base area
H - height
First count volume of one pyramid:
![V=\dfrac{1}{3} \cdot 3 \cdot 4=4 [\hbox{inch}^3]](https://tex.z-dn.net/?f=V%3D%5Cdfrac%7B1%7D%7B3%7D%20%5Ccdot%203%20%5Ccdot%204%3D4%20%5B%5Chbox%7Binch%7D%5E3%5D)
So by using 576 inch^3 you can make 576 : 4 =
144 pyramids
.361 .36 .35 1/5
1/5 = .20
Given expression :
.
We need to apply power property of logs to rewrite it.
According to log rule of exponents:

If we compare given expression with the rule the exponent part is f, base is 6.
Therefore, we need to bring exponent f in front of log.
Therefore,
.
<h3>And correct option is second option

</h3>
Answer:
bc it has the same value
Step-by-step explanation:
Factor each
60x^4=2*2*3*5*x*x*x*x
45x^5y^5=3*3*5*x*x*x*x*x*y*y*y*y*y
75x^3y=3*5*5*x*x*x*y
common is 3*5*x*x*x=15x^3
gcf=15x^3