Answer:
h' = 55.3 m
Explanation:
First, we analyze the horizontal motion of the projectile, to find the time taken by the arrow to reach the orange. Since, air friction is negligible, therefore, the motion shall be uniform:
s = vt
where,
s = horizontal distance between arrow and orange = 60 m
v = initial horizontal speed of the arrow = v₀ Cos θ
θ = launch angle = 30°
v₀ = launch speed = 35 m/s
Therefore,
60 m = (35 m/s)Cos 30° t
t = 60 m/30.31 m/s
t = 1.98 s
Now, we analyze the vertical motion to find the height if arrow at this time. Using second equation of motion:
h = Vi t + (1/2)gt²
where,
Vi = Vertical Component of initial Velocity = v₀ Sin θ = (35 m/s)Sin 30°
Vi = 17.5 m/s
Therefore,
h = (17.5 m/s)(1.98 s) + (1/2)(9.81 m/s²)(1.98 s)²
h = 34.6 m + 19.2 m
h = 53.8 m
since, the arrow initially had a height of y = 1.5 m. Therefore, its final height will be:
h' = h + y
h' = 53.8 m + 1.5 m
<u>h' = 55.3 m</u>