Answer:
All change in their form in relation to amount of heat energy.
Explanation:
- Due to the chemicals bonds that are within these forms of matter. The solids are compact and have strong bonds where the atomic molecules are attached to each other firmly.
- While in gases the bonds are least developed and molecules are able to move freely with the least friction. In water, the bonding is neither compact nor loose.
- All this is possible due to the addition of heat to molecules as they gain energy they start to move. Hence changes their forms, while the water molecules one hydrogen bond that is attached to nonbonding pairs of electrons. The water molecules form and reform continuously.
Ω₀ = the initial angular velocity (from rest)
t = 0.9 s, time for a revolution
θ = 2π rad, the angular distance traveled
Let
α = the angular acceleration
ω = the final angular velocity
The angular rotation obeys the equation
(1/2)*(α rad/s²)*(0.9 s)² = (2π rad)
α = 15.514 rad/s²
The final angular velocity is
ω = (15.514 rad/s²)*(0.9 s) = 13.963 rad/s
If the thrower's arm is r meters long, the tangential velocity of release will be
v = 13.963r m/s
Answer: 13.963 rad/s
Answer:
96%
Explanation
Let A the total area of the galaxy, is modeled as a disc:
A = πR^2 = π (25 kpc)^2
And let a be the area that astronomers are able to see:
a = πr^2 = π(5 kpc)^2
The percentage that can be seen is equal to 100 times the ratio of the areas, of the galaxy and the "visible" part:
P = 100 a/A = (5/25)^2 = 100/25 = 4%
Therefore, the percentage of the galaxy not included, i.e. not seen is:
(100-4)% = 96%