r = radius of the circle traveled by the particle = 76 cm = 0.76 m
T = time period of revolution for the particle = 4.5 s
w = angular velocity of the particle
angular velocity of the particle is given as
w = 2π/T
inserting the values
w = 2 (3.14)/4.5
w = 1.4 rad/s
a = centripetal acceleration of the particle in the circle
centripetal acceleration is given as
a = r w²
inserting the values
a = (0.76) (1.4)²
a = 1.5 m/s²
The weight of an object is the force of gravity between Earth's
mass and the object's mass.
The forces of gravity always come in equal, opposite pairs.
The Earth's weight on the object is the same as the object's
weight on the Earth, and when the object falls to Earth, Earth
falls to the object.
Pretty sure it’s Force*Distance*Cos(theta)
A boiling pot of water (the water travels in a current throughout the pot), a hot air balloon (hot air rises, making the balloon rise) , and cup of a steaming, hot liquid (hot air rises, creating steam) are all situations where convection occurs.
Read more on Brainly.com -
brainly.com/question/1581851#readmore
Answer:
The maximum potential difference is 186.02 x 10¹⁵ V
Explanation:
formula for calculating maximum potential difference

where;
Ke is coulomb's constant = 8.99 x 10⁹ Nm²/c²
k is the dielectric constant = 2.3
b is the outer radius of the conductor = 3 mm
a is the inner radius of the conductor = 0.8 mm
λ is the linear charge density = 18 x 10⁶ V/m
Substitute in these values in the above equation;

Therefore, the maximum potential difference this cable can withstand is 186.02 x 10¹⁵ V