Yes, 23 has an inverse mod 1000 because gcd(23, 1000) = 1 (i.e. they are coprime).
Let <em>x</em> be the inverse. Then <em>x</em> is such that
23<em>x</em> ≡ 1 (mod 1000)
Use the Euclidean algorithm to solve for <em>x</em> :
1000 = 43×23 + 11
23 = 2×11 + 1
→ 1 ≡ 23 - 2×11 (mod 1000)
→ 1 ≡ 23 - 2×(1000 - 43×23) (mod 1000)
→ 1 ≡ 23 - 2×1000 + 86×23 (mod 1000)
→ 1 ≡ 87×23 - 2×1000 ≡ 87×23 (mod 1000)
→ 23⁻¹ ≡ 87 (mod 1000)
If the two lengths are 7 and 3, then I believe the length of the hypotenuse would be approximately 7.62.
68>6t+4 when ever the number is per something(the 6) you put the variable with it and 4 is the constant
t>16
Answer:
(in attachment)
Step-by-step explanation:
you can find the points by inputting the x-values into the equation to solve for the y-values, then connecting the plotted points to create the line.
When x=-4
y=1/2(-4)
y=-2
(-4,-2)
Repeat for all values.