Answer:
An Atom's individual speed will change as it collides with other atoms, so we have to use an average.
Explanation:
In a gas a single atoms does an assortment of things during its time in the gas—sometimes it collides with an other atom gaining a lot of speed, sometimes losing a lot of speed in the collision, and sometimes just moving freely. Therefore: the motion of one individual atom is unpredictable, and it cannot be representative of all the the atoms in a gas, which is why we must average over all speeds of all atoms to find an average speed that allows us to calculate other quantities like temperature and pressure of the gas.
Hence, the second option <em>"an Atom's individual speed will change as it collides with other atoms, so we have to use an average" </em>stands correct.
Roughly 50 for me i dont know about anyone else
Answer:
a) 520m
b) 10.30 s
c) 100,95 m/s
Explanation:
a) According the given information, the rocket suddenly stops when it reach the height of 520m, because the engines fail, and then it begins the free fall.
This means the maximum height this rocket reached before falling was 520 m.
b) As we are dealing with constant acceleration (due gravity)
we can use the following formula:
(1)
Where:
is the initial height of the rocket (at the exact moment in which it stops due engines fail)
is the final height of the rocket (when it finally hits the launch pad)
is the initial velocity of the rocket (at the exact moment in which it stops the velocity is zero and then it begins to fall)
is the acceleration due gravity
is the time it takes to the rocket to hit the launch pad
Clearing
:
(2)
(3)
(4)
(5) This is the time
c) Now we need to find the final velocity
for this rocket, and the following equation will be perfect to find it:
(6)
(7)
(8) This is the final velocity of the rocket. Note the negative sign indicates its direction is downwards (to the launch pad)
<span>The speed of the roller coaster when it has to start a similar identical hill the speed would be exactly the same that is 6.0 m/s. And the fact that there is an absence of both friction and air resistance helps us get to this conclusion that it is same as in the previous case.</span>
<span> The meteor accelerates after it is brought into earths force field
</span>