<h3>X-Rays contradict to?</h3>
<h3>C. gamma </h3>
a type of penetrating electromagnetic radiation produced by the radioactive disintegration of atomic nuclei
Current is defined as the rate at which charge flows. The quantity that is current is directly affected by the voltage and the resistance of the circuit, where current is directly proportional to the voltage, and inversely to the resistance.
Among the choices, the correct answer is B.
Answer:
Points downward, and its magnitude is 9.8 m/s^2
Explanation:
The motion of a projectile consists of two independent motions:
- A uniform horizontal motion, with constant velocity and zero acceleration. In fact, there are no forces acting on the projectile along the horizontal direction (if we neglect air resistance), so the acceleration along this direction is zero.
- A vertical motion, with constant acceleration g = 9.8 m/s^2 towards the ground (downward), due to the presence of gravity wich "pulls" the projectile downward.
The total acceleration of the projectile is given by the resultant of the horizontal and vertical components of the acceleration. But we said that the horizontal component is zero, therefore the total acceleration corresponds just to its vertical component, therefore it is a vector with magnitude 9.8 m/s^2 which points downward.
Answer:
emf=-0.035V
Explanation:
this problem can be solved with the Lenz's law:

where PhiB is the magnetic flux. In this case we have

due to the magnetic field is constant. A is the area of the circular loop. Hence

Finally

HOPE THIS HELPS!!
Answer:
1. The bird close to the center
2. 4/25 of the original force.
Explanation:
1. Tangential velocity is v=w*d (in m/s), where w is the rotational speed, commonly denoted as the letter omega (in radians per second). d is the distance from the center of the rotating object to the position of where you would like to calculate the velocity (in meters).
As we can note, the furthest from the center we are calculating the velovity the higher it is, because the rotational velocity is not changing but the distance of the object with respect to the center is. If v=w*d, then the lower the d (distance) the lower the tangential velocity.
2. Take a look at the picture:
We have the basic equation for the gravitational force.
We have to forces: Fg1, which is the original force, and Fg2, the force when the mass and the distance changes.
If we consider that mass 2 didn't change (m2'=m2), mass 1 is four times its original (m1'=4*m1) and distance is 5 times the original (r'=5*r), then next step is just plugging it into the equation for Fg2.
Dividing the original force Fg1 by the new force Fg2 (notice you can just as well do the inverse, Fg2 divided by Fg1) gives us the relation between the forces, cancelling all the variables and being left only with a simple fraction!