Answer:
q = 8.57 10⁻⁵ mC
Explanation:
For this exercise let's use Newton's second law
F = ma
where force is magnetic force
F = q v x B
the bold are vectors, if we write the module of this expression we have
F = qv B sin θ
as the particle moves perpendicular to the field, the angle is θ= 90º
F = q vB
the acceleration of the particle is centripetal
a = v² / r
we substitute
qvB = m v² / r
qBr = m v
q =
The exercise indicates the time it takes in the route that is carried out with constant speed, therefore we can use
v = d / t
the distance is ¼ of the circle,
d =
d =
we substitute
v =
r =
let's calculate
r =
2 2.2 10-3 88 /πpi
r = 123.25 m
let's substitute the values
q =
7.2 10-8 88 / 0.6 123.25
q = 8.57 10⁻⁸ C
Let's reduce to mC
q = 8.57 10⁻⁸ C (10³ mC / 1C)
q = 8.57 10⁻⁵ mC
Answer:
ma = 48.48kg
Explanation:
To find the mass of the astronaut, you first calculate the mass of the chair by using the information about the period of oscillation of the empty chair and the spring constant. You use the following formula:
(1)
mc: mass of the chair
k: spring constant = 600N/m
T: period of oscillation of the chair = 0.9s
You solve the equation (1) for mc, and then you replace the values of the other parameters:
(2)
Next, you calculate the mass of the chair and astronaut by using the information about the period of the chair when the astronaut is sitting on the chair:
T': period of chair when the astronaut is sitting = 2.0s
M: mass of the astronaut plus mass of the chair = ?
(3)
Finally, the mass of the astronaut is the difference between M and mc (results from (2) and (3)) :

The mass of the astronaut is 48.48 kg
Answer:
Explanation:
The car is rolling without slipping so Vcm= R×ω = 0.325×49 = 16
There are 8 hydrogen atoms