La respuesta es la letra b
The answer is a.
The graph's line is higher if velocity is higher, and lower if velocity is lower. This is because the y axis is velocity. Thus, the fastest (highest velocity) that the car went is when the line was highest, and that is when x is 1.
Answer:
Explanation:
For an electric force, F the formula:
F = kQq/r^2
Given:
r2 = 1/2 × r1
F1 × r1 = k
F1 × r1 = F2 × r2
F2 = (F1 × r1^2)/(0.5 × r1)^2
= (F1 × r1^2)/0.25r1^2
= 4 × F1.
Answer:
A wedge is a machine that consists of two inclined planes, giving it a thin end and thick end. A wedge is used to cut or split apart objects. Force is applied to the thick end of the wedge, and the wedge applies force to the object along both of its sloping sides. This force causes the object to split apart
Answer:
a)
= 928 J
, b)U = -62.7 J
, c) K = 0
, d) Y = 11.0367 m, e) v = 15.23 m / s
Explanation:
To solve this exercise we will use the concepts of mechanical energy.
a) The elastic potential energy is
= ½ k x²
= ½ 2900 0.80²
= 928 J
b) place the origin at the point of the uncompressed spring, the spider's potential energy
U = m h and
U = 8 9.8 (-0.80)
U = -62.7 J
c) Before releasing the spring the spider is still, so its true speed and therefore the kinetic energy also
K = ½ m v²
K = 0
d) write the energy at two points, maximum compression and maximum height
Em₀ = ke = ½ m x²
= mg y
Emo = 
½ k x² = m g y
y = ½ k x² / m g
y = ½ 2900 0.8² / (8 9.8)
y = 11.8367 m
As zero was placed for the spring without stretching the height from that reference is
Y = y- 0.80
Y = 11.8367 -0.80
Y = 11.0367 m
Bonus
Energy for maximum compression and uncompressed spring
Emo = ½ k x² = 928 J
= ½ m v²
Emo =
Emo = ½ m v²
v =√ 2Emo / m
v = √ (2 928/8)
v = 15.23 m / s