To find out how many grams are in 4.65 moles of Al(NO₂)₃
Find out what the molar mass of Al(NO₂)₃ is
Al = 26.98 g/mol Al
N = 14 g/mol N
O = 16 g/mol O
Next, you have to look at the subscripts and figure out which they belong to, in this case:
Al = 26.98 g/mol Al
N₃ = 42 g/mol N₃
O₆ = 96 g/mol O₆
Finally, add the numbers together, so:
26.98 g/mol Al + 42 g/mol N₃ + 96 g/mol O₆ =
164.98 g/mol Al(NO₂)₃
Now, you have 4.65 mol Al(NO₂)₃ so
164.98 g/mol Al(NO₂)₃ × 4.65 mol Al(NO₂)₃ =
767.157 grams of Al(NO₂)₃
Magnesium :
<span>[Ne] 3s²</span>
Answer A
hope this helps!
The strength of an acid increases if the stability of conjugate base increases
The stability of a conjugate base increases with the presence of electron with drawing group (electronegative group)
Thus more the electronegativity of an atom attached to a carboxylic acid higher the strength of acid
In these examples CH3CH2CH2CF2CH2COOH contains to electronegative flourine atoms which stabilizes the conjugate base hence this will be the strongest acid among the given acids
Explanation:
Mole ratio of Zn to HCl = 1 : 2.
If we use all 2.0mol of Zn, we would need 2.0 * 2 = 4.0mol of HCl. However we only have 3.0mol of HCl.
Therefore HCl is limiting.