1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
patriot [66]
3 years ago
11

What is the measure of

Mathematics
1 answer:
Annette [7]3 years ago
8 0

Answer:

gvb

Step-by-step explanation:

your question is wrong

ask right question first

You might be interested in
4x + 8y = 20<br> -4x + 2y = -30 solve using elimination
Ahat [919]
(7,-1)
comment if u want me to explain the answer
8 0
2 years ago
A teenager who is 5 feet tall throws an object into the air. The quadratic function LaTeX: f\left(x\right)=-16x^2+64x+5f ( x ) =
tia_tia [17]

Answer:

At approximately x = 0.08 and x = 3.92.

Step-by-step explanation:

The height of the ball is modeled by the function:

f(x)=-16x^2+64x+5

Where f(x) is the height after x seconds.

We want to determine the time(s) when the ball is 10 feet in the air.

Therefore, we will set the function equal to 10 and solve for x:

10=-16x^2+64x+5

Subtracting 10 from both sides:

-16x^2+64x-5=0

For simplicity, divide both sides by -1:

16x^2-64x+5=0

We will use the quadratic formula. In this case a = 16, b = -64, and c = 5. Therefore:

\displaystyle x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

Substitute:

\displaystyle x=\frac{-(-64)\pm\sqrt{(-64)^2-4(16)(5)}}{2(16)}

Evaluate:

\displaystyle x=\frac{64\pm\sqrt{3776}}{32}

Simplify the square root:

\sqrt{3776}=\sqrt{64\cdot 59}=8\sqrt{59}

Therefore:

\displaystyle x=\frac{64\pm8\sqrt{59}}{32}

Simplify:

\displaystyle x=\frac{8\pm\sqrt{59}}{4}

Approximate:

\displaystyle x=\frac{8+\sqrt{59}}{4}\approx 3.92\text{ and } x=\frac{8-\sqrt{59}}{4}\approx0.08

Therefore, the ball will reach a height of 10 feet at approximately x = 0.08 and x = 3.92.

7 0
2 years ago
Which function is f(x) equal to f^-1(x)?
Morgarella [4.7K]

Answer:

c. f(x) x+1/x-1

Step-by-step explanation:

To answer this question, we need to check each answer one by one until we find the right one.  

y = (x+6)/(x-6)  

switch x and y  

x = (y+6)/(y-6)  

solve for y  

x(y-6) = y+6  

xy - 6x = y+6  

y(x-1) = 6x+6  

y = (6x+6) /(x-1) = 6(x+1)/(x-1)  

f^-1(x) = 6(x+1)/(x-1)  

y = (x+2)/(x-2)  

switch x and y  

x = (y+2)/(y-2)  

solve for y  

x(y-2) = y+2  

xy -2x = y+2  

y(x-1) = 2x+2  

y = (2x+2)/(x-1)  

f^-1(x) = 2(x+1)/(x-1)  

y = (x+1)/(x-1) ------ correct one  

switch x and y  

x = (y+1)/(y-1)  

solve for y  

x(y-1) = y+1  

xy - x = y+1  

y(x-1) = x+1  

y = (x+1)/(x-1)  

f^-1(x) = (x+1)/(x-1)  

f(x) = f^-1(x)

6 0
3 years ago
Read 2 more answers
one rectangle has a length 10 cm and width 5 cm the second rectangle has length 12 cm and width 4 cm are the two rectangles simi
tatuchka [14]

Answer:

No, they aren't similar.

Step-by-step explanation:

<u><em>Let's take the proportionality of their sides to check whether they are similar or not:</em></u>

\frac{10}{5} = \frac{12}{4}

=> 2 ≠ 3

So, they are not similar.

8 0
3 years ago
Prove that: (b²-c²/a)CosA+(c²-a²/b)CosB+(a²-b²/c)CosC = 0​
IRISSAK [1]

<u>Prove that:</u>

\:\:\sf\:\:\left(\dfrac{b^2-c^2}{a}\right)\cos A+\left(\dfrac{c^2-a^2}{b}\right)\cos B +\left(\dfrac{a^2-b^2}{c}\right)\cos C=0

<u>Proof: </u>

We know that, by Law of Cosines,

  • \sf \cos A=\dfrac{b^2+c^2-a^2}{2bc}
  • \sf \cos B=\dfrac{c^2+a^2-b^2}{2ca}
  • \sf \cos C=\dfrac{a^2+b^2-c^2}{2ab}

<u>Taking</u><u> </u><u>LHS</u>

\left(\dfrac{b^2-c^2}{a}\right)\cos A+\left(\dfrac{c^2-a^2}{b}\right)\cos B +\left(\dfrac{a^2-b^2}{c}\right)\cos C

<em>Substituting</em> the value of <em>cos A, cos B and cos C,</em>

\longmapsto\left(\dfrac{b^2-c^2}{a}\right)\left(\dfrac{b^2+c^2-a^2}{2bc}\right)+\left(\dfrac{c^2-a^2}{b}\right)\left(\dfrac{c^2+a^2-b^2}{2ca}\right)+\left(\dfrac{a^2-b^2}{c}\right)\left(\dfrac{a^2+b^2-c^2}{2ab}\right)

\longmapsto\left(\dfrac{(b^2-c^2)(b^2+c^2-a^2)}{2abc}\right)+\left(\dfrac{(c^2-a^2)(c^2+a^2-b^2)}{2abc}\right)+\left(\dfrac{(a^2-b^2)(a^2+b^2-c^2)}{2abc}\right)

\longmapsto\left(\dfrac{(b^2-c^2)(b^2+c^2)-(b^2-c^2)(a^2)}{2abc}\right)+\left(\dfrac{(c^2-a^2)(c^2+a^2)-(c^2-a^2)(b^2)}{2abc}\right)+\left(\dfrac{(a^2-b^2)(a^2+b^2)-(a^2-b^2)(c^2)}{2abc}\right)

\longmapsto\left(\dfrac{(b^4-c^4)-(a^2b^2-a^2c^2)}{2abc}\right)+\left(\dfrac{(c^4-a^4)-(b^2c^2-a^2b^2)}{2abc}\right)+\left(\dfrac{(a^4-b^4)-(a^2c^2-b^2c^2)}{2abc}\right)

\longmapsto\dfrac{b^4-c^4-a^2b^2+a^2c^2}{2abc}+\dfrac{c^4-a^4-b^2c^2+a^2b^2}{2abc}+\dfrac{a^4-b^4-a^2c^2+b^2c^2}{2abc}

<em>On combining the fractions,</em>

\longmapsto\dfrac{(b^4-c^4-a^2b^2+a^2c^2)+(c^4-a^4-b^2c^2+a^2b^2)+(a^4-b^4-a^2c^2+b^2c^2)}{2abc}

\longmapsto\dfrac{b^4-c^4-a^2b^2+a^2c^2+c^4-a^4-b^2c^2+a^2b^2+a^4-b^4-a^2c^2+b^2c^2}{2abc}

<em>Regrouping the terms,</em>

\longmapsto\dfrac{(a^4-a^4)+(b^4-b^4)+(c^4-c^4)+(a^2b^2-a^2b^2)+(b^2c^2-b^2c^2)+(a^2c^2-a^2c^2)}{2abc}

\longmapsto\dfrac{(0)+(0)+(0)+(0)+(0)+(0)}{2abc}

\longmapsto\dfrac{0}{2abc}

\longmapsto\bf 0=RHS

LHS = RHS proved.

7 0
2 years ago
Other questions:
  • PLEASE MATH HELP WILL GIVE BRAINLIEST!!
    11·1 answer
  • Using V = lwh, what is an expression for the volume of the following prism? The dimensions of a prism are shown. The height is S
    15·3 answers
  • 3=-13+4c what is the amswer
    5·2 answers
  • What is the cube root of a27
    12·2 answers
  • What is the value of x in 2(x−8)=x+5x​
    10·1 answer
  • Suppose Y(t) = 25e^3t + 12 represents the number of bacteria present at time t minutes. At what time will the population reach 1
    8·1 answer
  • Kareem heats a beaker of water to boil. Then he records that the water temperature decreases from 100% C to 19 C in 5 2/5 minute
    9·1 answer
  • Write the slope-intercept form of the equation of each line given the slope and y-intercept.
    15·1 answer
  • A lake has a population of a rare endangered fish. The lake currently has a population of 14 fish. The number of fish is increas
    13·1 answer
  • PLS HELP ASAP THANKS ILL GIVE BRAINLKEST PLS THANKS PLS ASAP
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!