A force vector F1 points due
east and has a magnitude of 200 Newtons, A second force F2 is added to F1. The
resultant of the two vectors has a magnitude of 400 newtons and points along
the due east/west line. Find the magnitude and direction of F2. Note that there
are two answers.
<span>The given values are
F1 = 200 N</span>
F2 =?
Total = 400 N
Solution:
F1 + F2 = T
200 N + F2 = 400N
F2 = 400 - 200
F2 = 200
N
Answer:
The value is
Explanation:
From the question we are told that
The amount of power delivered is 
The time taken is 
The wavelength is 
Generally the energy delivered is mathematically represented as

Where
is the Planck's constant with value 
c is the speed of light with value 
So

=> 
True. The 7 colors, also called a rainbow, are red, orange, yellow, green, blue, indigo, and violet. This rainbow is formed because the prism bends the white light and spreads it out into the colors it was made of. If there is more you were looking for, comment here.
Answer:
34.8 and 55.2º
Explanation:
This is a projectile launching exercise, as we are told that the range of the arrow must be equal to its range and = 31 m let's use the equation
The scope equation is
R = v₀² sin 2θ /g
sin 2 θ = R g / v₀²
sin 2 θ = 31 9.8 / 18²
2 θ = sin⁻¹ 0.93765
θ = 34.8º
At the launch of projectiles we have two complementary angles with the same range in this case 34.8 and (90-34.8) = 55.2º
Answer:
part (a) 
part (b) N = 79.61 rev
part (c) 
Explanation:
Given,
- Initial speed of the wheel =

- total time taken = t = 20.0 sec
part (a)
Let
be the angular acceleration of the wheel.
Wheel is finally at the rest. Hence the final angular speed of the wheel is 0.

part (b)
Let
be the total angular displacement of the wheel from initial position till the rest.

We know, 1 revolution =
rad
Let N be the number of revolution covered by the wheel.

Hence the 79.61 revolution is covered by the wheel in the 20 sec.
part (c)
Given,
- Mass of the pole = m = 4 kg
- Length of the pole = L = 2.5 m
- Angle of the pole with the horizontal axis =

Now the center of mass of the pole = 
Weight component of the pole perpendicular to the center of mass = 
