Answer:
d = 1.65 m
Explanation:
Given that,
The speed of a ball, v = 3 m/s
A ball rolls a level table that is 1.5 m above the floor.
We can find how long the ball is in free fall. We can use the second equation of kinematics as follows :

u is the initial speed in the vertical direction
So,

Now, using the formula of velocity.

So, the landing spot is at 1.65 m from the table.
Answer:
The mechanical energy of the helicopter is
.
Explanation:
It is given that,
Mass of the helicopter, m = 3250 kg
Speed of the helicopter, v = 56.9 m/s
Position of the helicopter, h = 185 m
The energy possessed by an object due to its motion is called its kinetic energy. It is given by :


The energy possessed by an object due to its position is called its potential energy. It is given by :


The sum of kinetic and potential energy is called mechanical energy of the system. It is given by :


or

So, the mechanical energy of the helicopter is
. Hence, this is the required solution.
Answer:
True
Explanation:
The Florida law states that a person driving an animal-drawn vehicle has the same protections that are applicable to a person driving a vehicle and the protections that are applicable to pedestrians also apply to a person riding or leading an animal upon a roadway or the shoulder of it. According to this, the answer is that the statement is true.
Explanation:
Given that,
Initial speed of the airfield, u = 0
Final speed, v = 27.8 m/s
Acceleration of the airfield, 
Length of the runway, d = 150 m
Let v' is the speed of the airplane to reach the required speed for takeoff. Finding v' using third equation of motion as :

This speed is not enough as the airfield must reach a speed before takeoff of at least 27.8 m/s. Now, the required length of the runways is :

So, the minimum length of the runways is 193.21 meters.
Answer: clean drinking water I THINK
Explanation: