1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivahew [28]
3 years ago
11

Sound is a _____ wave

Physics
1 answer:
erastova [34]3 years ago
4 0

~Hello There!~

Sound is a longitudinal wave.

Hope This Helps You!

Good Luck :)

Have A Great Day ^_^

- Hannah ❤

You might be interested in
Physics B 2020 Unit 3 Test
weqwewe [10]

Answer:

1)

When a charge is in motion in a magnetic field, the charge experiences a force of magnitude

F=qvB sin \theta

where here:

For the proton in this problem:

q=1.602\cdot 10^{-19}C is the charge of the proton

v = 300 m/s is the speed of the proton

B = 19 T is the magnetic field

\theta=65^{\circ} is the angle between the directions of v and B

So the force is

F=(1.602\cdot 10^{-19})(300)(19)(sin 65^{\circ})=8.28\cdot 10^{-16} N

2)

The magnetic field produced by a bar magnet has field lines going from the North pole towards the South Pole.

The density of the field lines at any point tells how strong is the magnetic field at that point.

If we observe the field lines around a magnet, we observe that:

- The density of field lines is higher near the Poles

- The density of field lines is lower far from the Poles

Therefore, this means that the magnetic field of a magnet is stronger near the North and South Pole.

3)

The right hand rule gives the direction of the  force experienced by a charged particle moving in a magnetic field.

It can be applied as follows:

- Direction of index finger = direction of motion of the charge

- Direction of middle finger = direction of magnetic field

- Direction of thumb = direction of the force (for a negative charge, the direction must be reversed)

In this problem:

- Direction of motion = to the right (index finger)

- Direction of field = downward (middle finger)

- Direction of force = into the screen (thumb)

4)

The radius of a particle moving in a magnetic field is given by:

r=\frac{mv}{qB}

where here we have:

m=6.64\cdot 10^{-22} kg is the mass of the alpha particle

v=2155 m/s is the speed of the alpha particle

q=2\cdot 1.602\cdot 10^{-19}=3.204\cdot 10^{-19}C is the charge of the alpha particle

B = 12.2 T is the strength of the magnetic field

Substituting, we find:

r=\frac{(6.64\cdot 10^{-22})(2155)}{(3.204\cdot 10^{-19})(12.2)}=0.366 m

5)

The cyclotron frequency of a charged particle in circular motion in a magnetic field is:

f=\frac{qB}{2\pi m}

where here:

q=1.602\cdot 10^{-19}C is the charge of the electron

B = 0.0045 T is the strength of the magnetic field

m=9.31\cdot 10^{-31} kg is the mass of the electron

Substituting, we find:

f=\frac{(1.602\cdot 10^{-19})(0.0045)}{2\pi (9.31\cdot 10^{-31})}=1.23\cdot 10^8 Hz

6)

When a charged particle moves in a magnetic field, its path has a helical shape, because it is the composition of two motions:

1- A uniform motion in a certain direction

2- A circular motion in the direction perpendicular to the magnetic field

The second motion is due to the presence of the magnetic force. However, we know that the direction of the magnetic force depends on the sign of the charge: when the sign of the charge is changed, the direction of the force is reversed.

Therefore in this case, when the particle gains the opposite charge, the circular motion 2) changes sign, so the path will remains helical, but it reverses direction.

7)

The electromotive force induced in a conducting loop due to electromagnetic induction is given by Faraday-Newmann-Lenz:

\epsilon=-\frac{N\Delta \Phi}{\Delta t}

where

N is the number of turns in the loop

\Delta \Phi is the change in magnetic flux through the loop

\Delta t is the time elapsed

From the formula, we see that the emf is induced in the loop (and so, a current is also induced) only if \Delta \Phi \neq 0, which means only if there is a change in magnetic flux through the loop: this occurs if the magnetic field is changing, or if the area of the loop is changing, or if the angle between the loop and the field is changing.

8)

The flux is calculated as

\Phi = BA sin \theta

where

B = 5.5 T is the strength of the magnetic field

A is the area of the coil

\theta=18^{\circ} is the angle between the  direction of the field and the plane of the loop

Here the loop is rectangular with lenght 15 cm and width 8 cm, so the area is

A=(0.15 m)(0.08 m)=0.012 m^2

So the flux is

\Phi = (5.5)(0.012)(sin 18^{\circ})=0.021 Wb

See the last 7 answers in the attached document.

Download docx
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> docx </span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> pdf </span>
5 0
3 years ago
Not sure if it went through last time. Please help asap!
Olin [163]
The equation for force is F=ma. Because we have the value of mass (0.42 kg) and the acceleration (14.8 m/s^2), simply plug them into the equation for force to get
0.42 \times 14.8 = 6.22
The answer is 6.22 N because newtons are the unit used to measure force.
8 0
3 years ago
Read 2 more answers
Does displacement = Δx?
Volgvan
Typically no. Displacement can be in multiple directions as a vector. of something is traveling only along x, then it would be true though this is usually not the case.
8 0
3 years ago
Read 2 more answers
How much heat is needed to raise the temperature of a 100.0g of water by 85.0 c?
KatRina [158]

Answer:

35.7kJ

Explanation:

we can calculate the amount of heat energy required , using this formula

Q = mcθ

where.

Q = heat energy (Joules, J)  

m = mass of a substance (kg)  

c = specific heat capacity (units Jkg^{-1} C^{-1})

θ  = change in temperature (Celcius,C or Kelvin K)

Assume Specific heat capacity (c) of water =4200Jkg^{-1} C^{-1}

mass =0.1 kg

Q=0.1 kg*4200Jkg^{-1} C^{-1}*85C\\=35700J\\=35.7kJ

3 0
3 years ago
The SAME amount of current I passes through three different resistors. R2 has twice the cross-sectional area and the same length
Snezhnost [94]

Answer:

resistor R₂ has the lowest current density

Explanation:

The current density is

          j = I / A

now let's analyze each case

a) R₂ has an area 2A₀ and a length L₀ that R₁

b) R₃ has an area Ao and a length 3L₀ what R₁

we can see that all the area is given in relation to the resistance R₁

 

the current density in R₁ is

         j₁ = I / A₀

the current density in R₂

         j₂ = I / 2A₀

         j₂ 2 = ½ I/A₀

the current density in R₃

         j₃ = I / A₀

         j₂ < j₁ = j₃

therefore resistor R₂ has the lowest current density

5 0
3 years ago
Other questions:
  • Which of the following statements describes an electric generator?
    12·2 answers
  • Imagine that a tank is filled with water. The height of the liquid column is 7 meters and the area is 1.5 square meters (m2). Wh
    8·2 answers
  • when a ball is dropped it is easy to see that earth exerts a force on it. why cant you tell that the ball exerts a force on it.
    7·1 answer
  • When the temperature of matter decrease , the particles do what
    7·1 answer
  • g If the interaction of a particle with its environment restricts the particle to a finite region of space, the result is the qu
    14·1 answer
  • On Earth, Yancy hits a golf ball as hard as he can. The golf ball flies 150 meters before hitting the ground. About how far woul
    14·2 answers
  • A man of mass 85 kg runs up a flight of stairs of height 4.6 m in a time period
    8·1 answer
  • This question looks so simple , but I don’t want to get it won’t could I get help .
    15·2 answers
  • Please help I have no idea how to do this
    8·2 answers
  • An object with a mass of 1500kg accelerates 10.0m/s when unknown force is applied to it. What is the amount of force?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!