Answer:
C
Explanation:
The answer is C because only that amount can move
Answer:
0.78 atm
Explanation:
Step 1:
Data obtained from the question. This includes:
Mass of CO2 = 5.6g
Volume (V) = 4L
Temperature (T) =300K
Pressure (P) =?
Step 2:
Determination of the number of mole of CO2.
This is illustrated below:
Mass of CO2 = 5.6g
Molar Mass of CO2 = 12 + (2x16) = 12 + 32 = 44g/mol
Number of mole CO2 =?
Number of mole = Mass/Molar Mass
Number of mole of CO2 = 5.6/44
Number of mole of CO2 = 0.127 mole
Step 3:
Determination of the pressure in the container.
The pressure in the container can be obtained by applying the ideal gas equation as follow:
PV = nRT
The gas constant (R) = 0.082atm.L/Kmol
The number of mole (n) = 0.127 mole
P x 4 = 0.127 x 0.082 x 300
Divide both side by 4
P = (0.127 x 0.082 x 300) /4
P = 0.78 atm
Therefore, the pressure in the container is
Answer:
11.7
Explanation:
The pH is the negative logarithm of the concentration of H+ ions. If the concentration is 2×10-¹² the the pH will be -log(2×10-¹²) which is 11.698 which can be round up to 11.7.
4- Ag+ions thats the answer i hope its correct
Answer:
0.156mol
Explanation:
Number of moles of a substance can be calculated from its mass by dividing its mass by molar mass i.e.
Number of moles (n) = mass/molar mass
Molar mass of PbCl4 is as follows, where Pb = 207.2g/mol, Cl = 35.5g/lol
PbCl4 = 207.2 + 35.5(4)
= 207.2 + 142
= 349.2g/mol
Using: mole = mass/molar mass
mole = 54.32 grams ÷ 349.2g/mol
mole = 0.1555
mole = 0.156mol