First we have to find moles of C:
Molar mass of CO2:
12*1+16*2 = 44g/mol
(18.8 g CO2) / (44.00964 g CO2/mol) x (1 mol C/ 1 mol CO2) =0.427 mol C
Molar mass of H2O:
2*1+16 = 18g/mol
As there is 2 moles of H in H2O,
So,
<span>(6.75 g H2O) / (18.01532 g H2O/mol) x (2 mol H / 1 mol H2O) = 0.74mol H </span>
<span>Divide both number of moles by the smaller number of moles: </span>
<span>As Smaaler no moles is 0.427:
So,
Dividing both number os moles by 0.427 :
(0.427 mol C) / 0.427 = 1.000 </span>
<span>(0.74 mol H) / 0.427 = 1.733 </span>
<span>To achieve integer coefficients, multiply by 2, then round to the nearest whole numbers to find the empirical formula:
C = 1 * 2 = 2
H = 1.733 * 2 =3.466
So , the empirical formula is C2H3</span>
Answer:
See explanation below
Explanation:
In this case, we have the equilibrium reaction which is:
H₂ + I₂ <------> 2HI Kp = 54
Now, we have the partial pressures of each element in equilibrium, therefore, we can use the expression of equilibrium in this case to calculate the remaining pressure:
Kp = PpHI² / PpH₂ * PpI₂
Solving for the partial pressure of iodine:
PpI₂ = PpHI² / PpH₂ * Kp
Replacing the given values, we have:
PpI₂ = (2.1)² / 0.933 * 54
PpI₂ = 4.41 / 50.382
PpI₂ = 0.088 atm
72.71 . simple google search, you shouldnt waste points
Answer:
8.72×10^5
Explanation:
Answered it in the comments! ^^
I think the answer is ice.