Answer:
18581.16
Step-by-step explanation:
The area of each of the shale can be calculated as
distance between each point = x
The area of the regular Dodecahedron
A = ![\sqrt[3]{25+10\sqrt{5} } a^{2}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B25%2B10%5Csqrt%7B5%7D%20%7D%20%20%20a%5E%7B2%7D)
where a = number of edges = 30
hence the area of the regular dodecaheron = 18581.16
I think the answer is C or A
-6+4q+(-6q)
-6-2q
That's the simplified expression.
<u>ANSWER:</u>
Length of the third side of right triangle is ![4 \sqrt[2]{7} \text { units }](https://tex.z-dn.net/?f=4%20%5Csqrt%5B2%5D%7B7%7D%20%5Ctext%20%7B%20units%20%7D)
<u>SOLUTION:</u>
Given, two sides of a right triangle is 3 units and 11 units.
We need to find the length of third side.
Let, length of first side be “a” i.e. a = 3
Length of hypotenuse be “h” i.e. h = 11
Length of second side be “b” and b =?
We know that, for a right angle triangle,



![\mathrm{b}=\sqrt[2]{16 \times 7}](https://tex.z-dn.net/?f=%5Cmathrm%7Bb%7D%3D%5Csqrt%5B2%5D%7B16%20%5Ctimes%207%7D)
![\mathrm{b}=\sqrt[2]{16} \times \sqrt[2]{7}](https://tex.z-dn.net/?f=%5Cmathrm%7Bb%7D%3D%5Csqrt%5B2%5D%7B16%7D%20%5Ctimes%20%5Csqrt%5B2%5D%7B7%7D)
hence, length of the third side of right triangle is ![4 \sqrt[2]{7} \text { units }](https://tex.z-dn.net/?f=4%20%5Csqrt%5B2%5D%7B7%7D%20%5Ctext%20%7B%20units%20%7D)
Answer:
140
Step-by-step explanation:
14 * 10 = 140