Answer:
The correct answer is "Electrons are transferred in an ionic bond"
Explanation:
The covalent bond is the chemical bond between atoms where electrons are shared, forming a molecule. Covalent bonds are established between non-metallic elements, such as hydrogen H, oxygen O and chlorine Cl. These elements have many electrons in their outermost level (valence electrons) and have a tendency to gain electrons to acquire the stability of the electronic structure of noble gas. The shared electron pair is common to the two atoms and holds them together.
An ionic bond is produced between metallic and non-metallic atoms, where electrons are completely transferred from one atom to another. During this process, one atom loses electrons and another one gains them, forming ions. Usually, the metal gives up its electrons forming a cation to the nonmetal element, which forms an anion.
In conclusion, chemical bonds are made so that atoms can have their entire outer layer, and thus have a stable electronic configuration. In the ionic bond, when the metallic atom has only one electron in its outer layer and the non-metallic one needs an electron to complete its layer; The metallic atom seats its electron to the non-metallic one. In the same way, the electron is shared in the covalent bond in order to achieve equilibrium.
Then, the main differences between the two bonds are that the ionic bond occurs between two different atoms (metallic and non-metallic), while the covalent bond occurs between two equal atoms (non-metallic). And in the covalent bond there is an electron compartment, while in the ionic bond there is an electron transfer.
So, the correct answer is "Electrons are transferred in an ionic bond"
Explanation:
Le Chatelier's principle states that for a long period of time if a system is at equilibrium and it is subjected to change in concentration, temperature, volume or pressure then the system shifts to a new equilibrium.
This change will partly counter acts the applied change.
Therefore, when heat is added to the system then equilibrium will shift to the side where temperature or heat is reduced again.
For example,
Since heat is added to the system, hence, system will shift to the left side or we can say equilibrium will shift to the backward direction.
When a meteroid goes into the atmosphere the friction starts slowing it down and generating heat.