1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anyanavicka [17]
3 years ago
14

2. A Se lanza un electrón con rapidez inicial v0 = 1.60×106 m/s hacia el interior de un campo uniforme entre las placas paralela

s de la figura E21.33. Suponga que el campo entre las placas es uniforme y está dirigido verticalmente hacia abajo, y que el campo fuera de las placas es igual a cero. El electrón ingresa al campo en un punto equidistante de las dos placas. A) Si el electrón apenas elude la placa superior al salir del campo, encuentre la magnitud del campo eléctrico. B) Suponga que en la figura E21.33 el electrón es sustituido por un protón con la misma rapidez inicial v0. ¿Golpearía el protón una de las placas? Si el protón no golpea ninguna de las placas, ¿cuáles serían la magnitud y la dirección de su desplazamiento vertical, cuando sale de la región entre las placas? C) Compare las trayectorias que recorren el electrón y el protón, y explique las diferencias. D) Analice si es razonable ignorar los efectos de la gravedad para cada partícula.
Physics
1 answer:
Vanyuwa [196]3 years ago
5 0

Answer:

A)     E = 145.6 N / C , B)  y= 2,8 10-7 m with a downward direction

C) he shape of the trajectory of the two particles is to simulate a parabola,

D)     F_{e} /F_{g} = 10³⁴

Explanation:

A) For this exercise we use Newton's second law to find the acceleration of the electron, where the force is electric

           F = m a  

           - e E = m a

          a = - e E / m

with the field directed downward, the acceleration is in the vertical upward direction.

We look for how much the electron moves with kinematics, in the x direction there is no acceleration,

x axis (parallel to plates)

           x = v₀ t

           t = x / v₀

y axis (perpendicular to plates)

          y = y₀ + v_{oy} t + ½ a t²

Let's take the zero of the system in the middle of the plates y₀ = 0, also the initial vertical velocity is zero (v_{oy} = 0) the width of the plate is known

          y = ½ a t²

we substitute

         y = ½ (e E /m)  (x / v₀)²

         y = ½ e x2 /m v₀²   E

we look for the electric field

        E = 2 m y v₀² / e x²

where to use this expression the length and width of the condenser must be known, suppose that the length is x = l = 1 cm = 1 10⁻² m and the width is y = 0.5 mm = 0.5 10⁻³ m

let's calculate

         E = 2  9.1 10⁻³¹ 0.5 10⁻³ (1.6 10⁶)² / (1.6 10⁻¹⁹ (1 10⁻²)²)

         E = 145.6 N / C

B) The electron is exchanged for a proton

Let's look for the vertical displacement, in this case as the proton has a positive charge it moves towards the bottom of the plates

          y = ½ e x² / m v₀² E

          y = ½ 1.6 10⁻¹⁹ 1 10⁻⁴ / (1.67 10⁻²⁷ (1.6 10⁶)²   145.6

          y = 28.4375 10⁻⁸ m

since the distance between the plates is 0.5 10-3 m, the proton passes the condensate because its deflection is very small

In summary, its displacement is y= 2,8 10-7 m and with a downward direction (the same direction of the electric field)

C) The shape of the trajectory of the two particles is to simulate a parabola, but one for having a negative charge (electron) the force is upwards and the other for having a positive charge (proton) the trajectory is downwards

D) The force of gravity

           F_{g} = G m M / R²

electron

          Between the electron and the positive charges of the conducting plate

           F_{g}= 6.67 10⁻¹¹ 1.67 10⁻²⁷ 9.1 10⁻³¹ / (0.5 10⁻³)²

           F_{g} = 4.1 10⁻⁵¹ N

           

electric force

           F_{e} = -e E

           F_{e} = - 1.6 10⁻¹⁹ 145.6

           F_{e} = 2.3 10⁻¹⁷ N

let's look for the reason between these two forces

         F_{e} / F_{g} = 2.3 10⁻¹⁷ / 4.1 10⁻⁵¹

          F_{e} /F_{g} = 10³⁴

We see that the electric force is many orders of magnitude higher than the gravitational force.

You might be interested in
A 26.2-kg dog is running northward at 3.02 m/s, while a 5.30-kg cat is running eastward at 2.74 m/s. Their 65.1-kg owner has the
REY [17]

Answer:

Angle with the +x axis is θ = 79.599degree

Then the velocity of owner = 1.235m/s

Explanation:

Given that the mass of dog is m1 =26.2 kg

velocity of dog is u1 = 3.02 m/s (north)

mass of cat is m2 = 5.3 kg

velocity is u2 = 2.74 m/s (east )

Mass of owner is M = 65.1 kg

Consider the east direction along +x axis andnorth along +y

momentum of dog is Py = m1 x u1

= 79.124 kg.m/s (j)

momentum of cat is Px = m2 x u2

= 14.522 kg.m/s (i)

Then the net magnitude of momentum is P = (Px2 + Py2)1/2

= 80.445

Angle with the +x axis is θ =tan-1(Py / Px ) = 79.599 degree

Then the velocity of owner is v = P / M = 1.235 m/s

3 0
3 years ago
10 POINTS!! SPACE QUESTION!!
wlad13 [49]
The First one trust...
5 0
3 years ago
Read 2 more answers
A simple pendulum has a period of 3.45 second, when the length of the pendulum is shortened by 1.0m, the period is 2.81 second c
den301095 [7]

Answer:

Original length = 2.97 m

Explanation:

Let the original length of the pendulum be 'L' m

Given:

Acceleration due to gravity (g) = 9.8 m/s²

Original time period of the pendulum (T) = 3.45 s

Now, the length is shortened by 1.0 m. So, the new length is 1 m less than the original length.

New length of the pendulum is, L_1=L-1

New time period of the pendulum is, T_1=2.81\ s

We know that, the time period of a simple pendulum of length 'L' is given as:

T=2\pi\sqrt{\frac{L}{g}}-------------- (1)

So, for the new length, the time period is given as:

T_1=2\pi\sqrt{\frac{L_1}{g}}------------ (2)

Squaring both the equations and then dividing them, we get:

\dfrac{T^2}{T_1^2}=\dfrac{(2\pi)^2\frac{L}{g}}{(2\pi)^2\frac{L_1}{g}}\\\\\\\dfrac{T^2}{T_1^2}=\dfrac{L}{L_1}\\\\\\L=\dfrac{T^2}{T_1^2}\times L_1

Now, plug in the given values and calculate 'L'. This gives,

L=\frac{3.45^2}{2.81^2}\times (L-1)\\\\L=1.507L-1.507\\\\L-1.507L=-1.507\\\\-0.507L=-1.507\\\\L=\frac{-1.507}{-0.507}=2.97\ m

Therefore, the original length of the simple pendulum is 2.97 m

4 0
3 years ago
The tension in the rope securing the upper pulley and the force that must be applied to keep the system in equilibrium ​
chubhunter [2.5K]

Answer:

Explanation:

In a frictionless system with no acceleration, the tension in the rope must be F along its entire length

FBD analysis of the lower pulley has two upward acting tension vectors F and one downward acting weight vector W

2F = W

F = W/2

FBD analysis of the upper pulley has one upward acting support vector T and three downward acting tension vectors F

T = 3F

T = 3(W/2)

T = 1.5W

8 0
3 years ago
Both hydrogen gas and helium gas are lighter than air. Why is helium used to lift blimps instead of hydrogen?
neonofarm [45]
A because helium is in balloons and it’s lifting the balloon. Hope this helps!
4 0
3 years ago
Other questions:
  • A truck covers 40.0 m in 8.50 s while smoothly slowing down to a final speed of 2.80 m/s. (a) find its original speed. (b) find
    15·2 answers
  • Which of the choices below is one of the primary gases found in the atmosphere? A. Helium B. Carbon Dioxide C. Nitrogen D. Argon
    12·2 answers
  • How Is budding different from fertilization
    5·1 answer
  • a stomp rocket takes 1.5 seconds to reach its maximum height what was the initial velocity and what was the maximum height ?
    14·2 answers
  • Which arrow best represents the path of an object with projectile motion?
    6·1 answer
  • 8
    15·1 answer
  • Which is a group pragram acoholics recover in
    5·1 answer
  • Molds survive best in <br> A) warm, most<br> B) dry, cold <br> C) bright, sunny<br> places
    7·2 answers
  • The amount of force applied per given area is
    14·1 answer
  • A single light beam is split into two equal beams, denoted a and b. beam a travels through a medium with a higher index of refra
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!