To Make I the subject you need to get it by itself. To do this divide both sides by V and t:
I = E/Vt
Multiply the power (1,800 watts) by time (1,200 seconds) to get 2,160,000 joules (or 2.16 MJ)
Answer:
Explanation:
<h3><em>
</em></h3>
<em><u>S</u></em><em><u>l</u></em><em><u>i</u></em><em><u>d</u></em><em><u>e</u></em><em><u> </u></em><em><u>m</u></em><em><u>y</u></em><em><u> </u></em><em><u>a</u></em><em><u>n</u></em><em><u>s</u></em><em><u>w</u></em><em><u>e</u></em><em><u>r</u></em><em><u> </u></em><em><u>t</u></em><em><u>o</u></em><em><u> </u></em><em><u>s</u></em><em><u>e</u></em><em><u>e</u></em><em><u> </u></em><em><u>t</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>f</u></em><em><u>u</u></em><em><u>l</u></em><em><u>l</u></em><em><u> </u></em><em><u>a</u></em><em><u>n</u></em><em><u>s</u></em><em><u>w</u></em><em><u>e</u></em><em><u>r</u></em><em><u> </u></em><em><u>.</u></em><em><u> </u></em>
1) The electric potential at a distance r from a single point charge is given by
where k is the Coulomb's constant, q is the charge and r is the distance from the charge.
The charge in this problem is
So the potential at distance
is
2) By using the same formula as before, we can find the electric potential at distance r=99 m from the charge: