Based on wind resistance?
Answer:
The first overtone frequency is 100 Hz.
Solution:
According to the question:
Length of pipe, l = 1.75 m
Speed of sound in air, v_{sa} = 350 m/s
Frequency of first overtone,
is given by:


Since, the frequency, as clear from the formula depends only on the speed
and the length. It is independent of the air temperature.
Thus there will be no effect of air temperature on the frequency.
Answer:
259.274 kW
Explanation:
Given:
Area of the lava, A = 1.00 m²
Temperature of the surrounding, T₁ = 30.0° C = 303 k
Temperature of the lava, T₂ = 1190° C = 1463 K
emissivity, e = 1
Now,
from the Stefan-Boltzmann law of radiation the rate of heat loss is given as,
u = σeA(T₂⁴ - T₁⁴)
where,
u = rate of heat loss
σ = Stefan-Boltzmann constant = 5.67 × 10⁻⁸ W/m²∙K⁴
on substituting the respective values, we get
u = 5.67 × 10⁻⁸ × 1 × 1 × (1463⁴ - 303⁴)
or
u = 259274.957 W
or
u = 259.274 kW
Answer:
a) letting in-flowing and/or out-flowing tide flow through turbines in a dam.
Explanation:
Tidal power makes use of the energy from the tidal force and wave action in order to generate electricity. it is a predictable source of energy.
Tidal Barrages
The system allows tides to enter, seawater flows via the dam and is trapped into the basin when the tides subside and system’s gates close.
When the tides start to move out, the gates in the dam are opened up this consist of turbines and water begins to flow out, hitting the turbines this eventually turn to produce energy.
Power is produced when the tidal range, which is the difference between low and high tide, has to be more than 5 meters.