The water creates less friction between your foot and the ground
Answer:
M' = μ₀n₁n₂πr₂²
Explanation:
Since r₂ < r₁ the mutual inductance M = N₂Ф₂₁/i₁ where N₂ = number of turns of solenoid 2 = n₂l where n₂ = number of turns per unit length of solenoid 2 and l = length of solenoid, Ф₂₁ = flux in solenoid 2 due to magnetic field in solenoid 1 = B₁A₂ where B₁ = magnetic field due to solenoid 1 = μ₀n₁i₁ where μ₀ = permeability of free space, n₁ = number of turns per unit length of solenoid 1 and i₁ = current in solenoid 1. A₂ = area of solenoid 2 = πr₂² where r₂ = radius of solenoid 2.
So, M = N₂Ф₂₁/i₁
substituting the values of the variables into the equation, we have
M = N₂Ф₂₁/i₁
M = N₂B₁A₂/i₁
M = n₂lμ₀n₁i₁πr₂²/i₁
M = lμ₀n₁n₂πr₂²
So, the mutual inductance per unit length is M' = M/l = μ₀n₁n₂πr₂²
M' = μ₀n₁n₂πr₂²
9*
m
Explanation:
Step 1:
We are given the initial length of the Pyrex glass dish at a particular temperature and need to calculate the change in the length when the temperature changes by 120° C. The coefficient of linear expansion of Pyrex is provided.
Step 2:
Change in length = Coefficient of linear expansion * Change in temperature * Initial length
Step 3:
Coefficient of linear expansion = 3*
/°C
Change in temperature = 120°C = 120 K
Initial length = 0.25 m
Step 4:
Change in length = 3*
* 120 * 0.25 = 9*
m
Answer:
r = √(k q₁ q₂ / F)
Explanation:
F = k q₁ q₂ / r²
Multiply both sides by r²:
F r² = k q₁ q₂
Divide both sides by F:
r² = k q₁ q₂ / F
Take the square root of both sides:
r = √(k q₁ q₂ / F)
Answer:
B)
Explanation:
The value the scale shows is the reaction force to the normal force (they are equal by Newton's 3rd Law) that the scale exerts on Eric.
The forces on Eric are his weight (downward) and this normal force (upward), so we can write the net force over him as (also using Newton's 2nd Law):

which means

and for our values this is:
