Answer:
Velocity of the car at the bottom of the slope: approximately
.
It would take approximately
for the car to travel from the top of the slope to the bottom.
Explanation:
The time of the travel needs to be found. Hence, make use of the SUVAT equation that does not include time.
- Let
denote the final velocity of the car. - Let
denote the initial velocity of the car. - Let
denote the acceleration of the car. - Let
denote the distance that this car travelled.
.
Given:
Rearrange the equation
and solve for
:
.
Calculate the time required for reaching this speed from
at
:
.
The first object is also negatively charged that is why people say opposites attract. have a good day!
Answer:
a.2.5x 10^3 m/s
b.mr=48kg/s
Explanation:
A rocket is moving away from the solar system at a speed of 7.5 ✕ 103 m/s. It fires its engine, which ejects exhaust with a speed of 5.0 ✕ 103 m/s relative to the rocket. The mass of the rocket at this time is 6.0 ✕ 104 kg, and its acceleration is 4.0 m/s2. What is the velocity of the exhaust relative to the solar system? (B) At what rate was the exhaust ejected during the firing?
velocity of the exhaust relative to the solar system
velocity of the rocket -velocity of the exhaust relative to the rocket.
7.5 ✕ 103 m/s-5.0 ✕ 103 m/s
2.5x 10^3 m/s
. b we will look for the thrust of the rocket
T=ma
T=6.0 ✕ 104 kg*4.0 m/s2
T=2.4*10^5N
f=mass rate *velocity of the exhaust
T=2.4*10^5N=mr*5.0 ✕ 10^3 m/s
mr=2.4*10^5N/5.0 ✕ 10^3
mr=48kg/s
The main reason for this is gravity. Gravity between objects in our solar system and milky way is strong enough to counteract this expansion. Hope it helps.
I believe it would be potential energy.