1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SCORPION-xisa [38]
3 years ago
15

B. Sonya says that her profit is increasing 4 times as

Mathematics
1 answer:
Advocard [28]3 years ago
7 0

Answer:

No, I beleive that her profits are only 3 times as much as Kirsten's profits.

Step-by-step explanation:

You might be interested in
5x3 + 14x2 + 9x <br> help
Cerrena [4.2K]
<h3>Answer:    x(x+1)(5x+9) </h3>

===================================================

Work Shown:

5x^3 + 14x^2 + 9x

x( 5x^2 + 14x + 9 )

To factor 5x^2 + 14x + 9, we could use the AC method and guess and check our way to getting the correct result.

A better way in my opinion is to solve 5x^2 + 14x + 9 = 0 through the quadratic formula

x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}\\\\x = \frac{-(14)\pm\sqrt{(14)^2-4(5)(9)}}{2(5)}\\\\x = \frac{-14\pm\sqrt{16}}{10}\\\\x = \frac{-14\pm4}{10}\\\\x = \frac{-14+4}{10} \ \text{ or } \ x = \frac{-14-4}{10}\\\\x = \frac{-10}{10} \ \text{ or } \ x = \frac{-18}{10}\\\\x = -1 \ \text{ or } \ x = \frac{-9}{5}\\\\

Then use those two solutions to find the factorization

x = -1  or  x = -9/5

x+1 = 0  or  5x = -9

x+1 = 0  or  5x+9 = 0

(x+1)(5x+9) = 0

So we have shown that 5x^2 + 14x + 9 factors to (x+1)(5x+9)

-----------

Overall,

5x^3 + 14x^2 + 9x

factors to

x(x+1)(5x+9)

6 0
3 years ago
Graph points (- 4, - 1)(4, 3) . Write the equation of the line that passes through the points in slope-intercept form
Reika [66]

Answer:

y = 0.5x + 1

Step-by-step explanation:

4 up, 8 right

rise over run

slope = 4/8 or 1/2

y-int = 1

6 0
3 years ago
What is Limit of StartFraction StartRoot x + 1 EndRoot minus 2 Over x minus 3 EndFraction as x approaches 3?
scoray [572]

Answer:

<u />\displaystyle \lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} = \boxed{ \frac{1}{4} }

General Formulas and Concepts:

<u>Calculus</u>

Limits

Limit Rule [Variable Direct Substitution]:
\displaystyle \lim_{x \to c} x = c

Special Limit Rule [L’Hopital’s Rule]:
\displaystyle \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:
\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]
Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:
\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify given limit</em>.

\displaystyle \lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3}

<u>Step 2: Find Limit</u>

Let's start out by <em>directly</em> evaluating the limit:

  1. [Limit] Apply Limit Rule [Variable Direct Substitution]:
    \displaystyle \lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} = \frac{\sqrt{3 + 1} - 2}{3 - 3}
  2. Evaluate:
    \displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \frac{\sqrt{3 + 1} - 2}{3 - 3} \\& = \frac{0}{0} \leftarrow \\\end{aligned}

When we do evaluate the limit directly, we end up with an indeterminant form. We can now use L' Hopital's Rule to simply the limit:

  1. [Limit] Apply Limit Rule [L' Hopital's Rule]:
    \displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \lim_{x \to 3} \frac{(\sqrt{x + 1} - 2)'}{(x - 3)'} \\\end{aligned}
  2. [Limit] Differentiate [Derivative Rules and Properties]:
    \displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \lim_{x \to 3} \frac{(\sqrt{x + 1} - 2)'}{(x - 3)'} \\& = \lim_{x \to 3} \frac{1}{2\sqrt{x + 1}} \leftarrow \\\end{aligned}
  3. [Limit] Apply Limit Rule [Variable Direct Substitution]:
    \displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \lim_{x \to 3} \frac{(\sqrt{x + 1} - 2)'}{(x - 3)'} \\& = \lim_{x \to 3} \frac{1}{2\sqrt{x + 1}} \\& = \frac{1}{2\sqrt{3 + 1}} \leftarrow \\\end{aligned}
  4. Evaluate:
    \displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \lim_{x \to 3} \frac{(\sqrt{x + 1} - 2)'}{(x - 3)'} \\& = \lim_{x \to 3} \frac{1}{2\sqrt{x + 1}} \\& = \frac{1}{2\sqrt{3 + 1}} \\& = \boxed{ \frac{1}{4} } \\\end{aligned}

∴ we have <em>evaluated</em> the given limit.

___

Learn more about limits: brainly.com/question/27807253

Learn more about Calculus: brainly.com/question/27805589

___

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

3 0
1 year ago
Sea un cuadrado de 2 pulgadas de lado uniendo los puntos medios se obtiene otro cuadrado inscrito en el anterior si repetimos es
Ne4ueva [31]

Answer:

1) La serie geométrica formada es

4, 2, 1,..., ∞

2) La suma al infinito de las áreas de los cuadrados es 8 in.²

Step-by-step explanation:

1) El área del primer cuadrado, a₁ = 2² = 4 pulgadas²

El área del siguiente cuadrado, a₂ = (√ (1² + 1²)) ² = (√2) ² = 2 pulg²

El área del siguiente cuadrado, a₃ = ((√ (2) / 2) ² + (√ (2) / 2) ²) = 1 pulg²

Por lo tanto, la razón común, r = a₂ / a₁ = 2/4 = a₃ / a₂ = 1/2

Las áreas de los cuadrados progresivos forman una progresión geométrica como sigue;

4, 4×(1/2), 4 ×(1/2)²,...,4×(1/2)^{\infty}

De donde obtenemos la serie geométrica formada de la siguiente manera;

4, 2, 1,..., ∞

2) La suma de 'n' términos de una progresión geométrica hasta el infinito para -1 <r <1 se da como sigue;

S_{\infty} = \dfrac{a}{1 - r}

Por lo tanto, la suma de las áreas de los cuadrados hasta el infinito se obtiene sustituyendo los valores de 'a' y 'r' en la ecuación anterior de la siguiente manera;

La \ suma \ al \ infinito \ del \ cuadrado \ S_{\infty}  = \dfrac{4 \ in.^2}{1 - \dfrac{1}{2} } = \dfrac{4 \ in.^2}{\left(\dfrac{1}{2} \right)} = 2 \times 4 \ in.^2= 8 \ in.^2

La suma al infinito de las áreas de los cuadrados, S_{\infty} = 8 in.²

7 0
2 years ago
Plot a point on the coordinate plane to represent each of the ratio values in the table.
Crank

Answer:

U almost got it right I posted the right answer below.

Step-by-step explanation:

The answer should be like this:

5 0
3 years ago
Other questions:
  • Find the value of x help 10 points
    11·1 answer
  • How many dimes are $68
    5·2 answers
  • On a piece of paper, graph y &lt; x + 1. Then determine which answer matches<br> the graph you drew.
    8·1 answer
  • The car Andres wants to buy has a list price $7,614.11. The dealer will sell it at 5% off. How much must he pay
    6·2 answers
  • Make the number 18 using six "1"s.
    6·1 answer
  • 5
    6·1 answer
  • Please help! I need the answer quick....
    14·1 answer
  • What are the solutions to the expression x^2-8x=24
    14·1 answer
  • How do the number of faces, vertices, and edges of a cube compare to the number of faces, vertices, and edges of a tetrahedron?
    14·1 answer
  • Which ordered pairs is a solution to -5x + 3y &gt; 12?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!