Answer:
h = 10,349.06 W/m^2 K
Explanation:
Given data:
Inner diameter = 3.0 cm
flow rate = 2 L/s
water temperature 30 degree celcius




at 30 degree celcius 

Re = 106390
So ,this is turbulent flow



SOLVING FOR H
WE GET
h = 10,349.06 W/m^2 K
Answer:
(N-1) × (L/2R) = (N-1)/2
Explanation:
let L is length of packet
R is rate
N is number of packets
then
first packet arrived with 0 delay
Second packet arrived at = L/R
Third packet arrived at = 2L/R
Nth packet arrived at = (n-1)L/R
Total queuing delay = L/R + 2L/R + ... + (n - 1)L/R = L(n - 1)/2R
Now
L / R = (1000) / (10^6 ) s = 1 ms
L/2R = 0.5 ms
average queuing delay for N packets = (N-1) * (L/2R) = (N-1)/2
the average queuing delay of a packet = 0 ( put N=1)
Answer:
c is the answer because we have to double the number
The rotor is situated inside the stator and is mounted on the AC motor's shaft. It is the rotating part of the AC motor. And while we know this, the major function of the rotor and the stator is helping the motor shaft rotate.
Answer:
The minimum particle diameter that is removed at 85% is 1.474 * 10 ^⁻4 meters.
Solution
Given:
Length = 48 m
Width = 12 m
Depth = 3m
Flow rate = 4 m 3 /s
Water density = 10 3 kg/m 3
Dynamic viscosity = 1.30710 -3 N.sec/m
Now,
At the minimum particular diameter it is stated as follows:
The Reynolds number= 0.1
Thus,
0.1 =ρVTD/μ
VT = Dp² ( ρp- ρ) g/ 10μ²
Where
gn = The case/issue of sedimentation
VT = Terminal velocity
So,
0.1 = Dp³ ( ρp- ρ) g/ 10μ²
This becomes,
0.1 = 1000 * dp³ (1100-1000) g 0.1/ 10 *(1.307 * 10 ^⁻3)²
= 3.074 * 10 ^⁻6 = dp³ (.g01 * 10^6)
dp³=3.1343 * 10 ^⁻12
Dp minimum= 1.474 * 10 ^⁻4 meters.