1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
murzikaleks [220]
3 years ago
6

A design that either partially or wholly integrates the bodywork

Engineering
1 answer:
Yakvenalex [24]3 years ago
6 0

Answer:

body-on-frame design.

:))

You might be interested in
Consider the problem of oxygen transfer from the interior lung cavity, across the lung tissue, to the network of blood vessels o
aalyn [17]

Answer:

See attached images

8 0
4 years ago
How would you describe what would happen to methane if the primary bonds were to break?
erastova [34]

Answer:

All the bonds in methane (CH4CH4) are equivalent, and all have the same dissociation energy.

The product of the dissociation is methyl radical (CH3CH3). All the bonds in methyl radical are equivalent, and all have the same dissociation energy.

The product of that dissociation is methylene (CH2CH2). All the bonds in methylene are equivalent, and all have the same dissociation energy.

The product of that dissociation is methyne (CHCH) .

The C-H bonds in methane do not have the same dissociation energy as C-H bonds in methyl radical, which in turn do not have the same dissociation energy as the C-H bonds in methylene, which are again different from the C-H bond in methyne.

If (by some miracle) you were able to get all four bonds in methane to dissociate absolutely simultaneously, they would all show the same dissociation energy… but that energy, per bond broken, would be different than the energy required to break just one C-H bond in methane, because the products are different.

(In this case, it’s CH4→C+4HCH4→C+4H versus CH4→CH3+HCH4→CH3+H.)

To alter hydrocarbons you add enough energy to break a C-H bond. Why does only one bond break? What concentrates the energy on one C-H bond?

the weakest CH bond is the one that breaks. in plain alkanes it has to do with the molecular orbital interactions between neighboring carbon atoms. look at propane for example. the middle carbon has two C-C bonds, and each of those C-C bonds is strengthened by slight electron delocalization from the C-H bonds overlapping with the antibonding orbitals of the adjacent carbons.

since the C-H bonds on the middle carbon donate electron density to both of its neighbors, those two are weakest.

one of them will break preferentially.

which one actually breaks depends on the reaction conditions (kinetics). frankly it's whichever one ramdomly approaches a nucleophile first. when the nucleophile pulls of one of the H's, the other C-H bonds start to share (delocalize) the negative charge across the whole molecule. so while the middle C feels the majority of the negative charge character, the other two C's take on a fair amount as well...

by the way, alkanes don't really like to break and form anions like that.

a better example would be something like isopropyl iodide, where the C-I bond breaks and the I carries away the electron pair, forming a carbocation (also not particularly stable, but more so than the carbanion).

7 0
3 years ago
The distillation column in Figure 3 is set up for so-called boil-up (V) control. It has
11111nata11111 [884]

A distillation column is an essential item used in the distillation of liquid mixtures to separate the mixture into its component parts, or fractions, based on the differences in volatilities. Fractionating columns are used in small scale laboratory distillations as well as large scale industrial distillations.

3 0
3 years ago
A large class with 1,000 students took a quiz consisting of ten questions. To get an A, students needed to get 9 or 10 questions
VMariaS [17]

Answer:

a. 0.11

b. 110 students

c. 50 students

d. 0.46

e. 460 students

f. 540 students

g. 0.96

Explanation:

(See attachment below)

a. Probability that a student got an A

To get an A, the student needs to get 9 or 10 questions right.

That means we want P(X≥9);

P(X>9) = P(9)+P(10)

= 0.06+0.05=0.11

b. How many students got an A on the quiz

Total students = 1000

Probability of getting A = 0.11 ---- Calculated from (a)

Number of students = 0.11 * 1000

Number of students = 110 students

So,the number of students that got A is 110

c. How many students did not miss a single question

For a student not to miss a single question, then that student scores a total of 10 out of possible 10

P(10) = 0.05

Total Students = 1000

Number of Students = 0.05 * 1000

Number of Students = 50 students

We see that 5

d. Probability that a student pass the quiz

To pass, a student needed to get at least 6 questions right.

So we want P(X>=6);

P(X>=) =P(6)+P(7)+P(8)+P(9)+P(10)

=0.08+0.12+0.15+0.06+0.05=0.46

So, the probability of a student passing the quiz is 0.46

e. Number of students that pass the quiz

Total students = 1000

Probability of passing the quiz = 0.46 ----- Calculated from (d)

Number of students = 0.46 * 1000

Number of students = 460 students

So,the number of students that passed the test is 460

f. Number of students that failed the quiz

Total students = 1000

Total students that passed = 460 ----- Calculated from (e)

Number of students that failed = 1000 - 460

Number of students that failed = 540

So,the number of students that failed is 540

g. Probability that a student got at least one question right

This means that we want to solve for P(X>=1)

Using the complement rule,

P(X>=1) = 1 - P(X<1)

P(X>=1) = 1 - P(X=0)

P(X>=1) = 1 - 0.04

P(X>=1) = 0.96

7 0
3 years ago
Consider a system having p processes, where each process needs a maximum of m instances of resource type R1. Given that there ar
Genrish500 [490]

Answer:

Consider a system consisting of 4 resources of same type that are share by 3 processes each of which needs at most two resources.Now we will show that the system is deadlock free.

If the system is deadlocked, it implies that each process is holding one resource and is waiting for one more. Since there are 3 processes and 4 resources, one process must be able to obtain two resources. This process requires no more resources and therefore it will return its resources when done.

Consider a system with m resources of same type being shared by n processes. Resources can be requested and released by processes only on at a time. The system is deadlock free if and only if The sum of all max needs is < m+n .

We can understand the notion of a deadlock from the following simple real-life example.To be able to write a letter one needs a letter pad and a pen. Suppose there in one letterpad and one pen on a table with two persons seated around the table. We shall identify these two persons as Mr. A and Ms. B. Both Mr. A and Ms. B are desirous of writing a letter. So both try to acquire the resources they need. Suppose Mr. A was able to get the letter pad. In the meantime, Ms. B was able to grab the pen. Note that each of them has one of the two resources they need to proceed to write a letter. If they hold on to the resource they possess and await the release of the resource by the other, then neither of them can proceed. They are deadlocked. We can transcribe this example for processes seeking resources to proceed with their execution. Consider an example in which process P1 needs three resources r1 ; r2, and r3 before it can make any further progress. Similarly, process P2 needs two resources r2 and r3 Also, let us assume that these resources are such that once granted, the permission to use is not withdrawn till the processes release these resources. The processes proceed to acquire these resources. Suppose process P1 gets resources r1 and r3 and process P2 is able to get resource r2 only. Now we have a situation in which process P1 is waiting for process P2 to release r2 before it can proceed. Similarly, process P2is waiting for process P1 to release resource r3 before it can proceed. Clearly, this situation can be recognized as a deadlock condition as neither process P1 nor process P2 can make progress. Formally, a deadlock is a condition that may involve two or more processes in a state such that each is waiting for release of a resource which is currently held by some other process.

5 0
3 years ago
Other questions:
  • A rectangular beam having b=300 mm and d=575 mm, spans 5.5 m face to face of simple supports. It is reinforced for flexure with
    14·1 answer
  • Define factor of safety and its significance
    5·1 answer
  • A transmitter has an output power of 0.1mW while the fiber has coupling loss of 12dB, attenuation of
    11·1 answer
  • How can I solve 23.5 million Nona meters to millimeters using no calculator because I have to show my work
    15·2 answers
  • What types of degradations that can take place in polymers and ceramics?
    11·1 answer
  • Does a thicker core make an electromagnet stronger?
    15·2 answers
  • The marking off table has a mass of 500kg.
    5·1 answer
  • After cutting a PVC pipe you should use a<br> to debure the pipe
    7·1 answer
  • What is the most common type of suspensions system used on body over frame vehicles?
    15·1 answer
  • Safety measures to be taken during technical drawing<br>​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!