Answer:
#1. Identity #2. 0 #3. No solution
Step-by-step explanation:
#1.
5y + 2 = (1/2)(10y+4)
5y + 2 = 5y + 2
This would be identity as the equation of the left and right are the same. This is not to be confused with no solution(explained below).
#2.
0.5b + 4 = 2(b+2)
0.5b + 4 = 2b + 4
0.5 b - 2b = 0
b = 0
#3.
-3x + 5 = -3x + 10
This equation has no solution because when you try to bring the -3x to one side, the x variable itself gets eliminated. So, how is it different from identity? Well in the first equation, it is true that when we try to bring the 5y one side it eliminates the y variable, however, that is also true for the constants(since if we try to bring the 2 to one side, it will be 2-2 which will equal 0, thus eliminating each other), but in this case, even if we remove the x, the constants will not equal 0, thus it will have no solution.
Ninty three point six five I think
Answer:
x = 8 +
or x = 8 − 
Step-by-step explanation:
Hope This Helps
Please Mark Brainliest if correct
I do Not Have Time To Explain I'm SO Sorry
The value of c for which the considered trinomial becomes perfect square trinomial is: 20 or -20
<h3>What are perfect squares trinomials?</h3>
They are those expressions which are found by squaring binomial expressions.
Since the given trinomials are with degree 2, thus, if they are perfect square, the binomial which was used to make them must be linear.
Let the binomial term was ax + b(a linear expression is always writable in this form where a and b are constants and m is a variable), then we will obtain:

Comparing this expression with the expression we're provided with:

we see that:

Thus, the value of c for which the considered trinomial becomes perfect square trinomial is: 20 or -20
Learn more about perfect square trinomials here:
brainly.com/question/88561