I think the correct answer would be the third option. The reason I2 has a higher melting point than F2 is because I2 possesses a more polarizable electron cloud. I2 contains more electrons than F2 which would result to a stronger intermolecular forces. Having stronger intermoleculer forces would mean more energy is needed to break the bonds so a higher melting point would be observed.
Answer: D. They show that neither theory is complete and entirely correct.
Explanation:
Theory is the set of rules and principles that describe and explain a particular phenomenon (the existence of the moon in this case) and is subject to changes as new evidence emerges that gives meaning to it.
In this sense, there are many theories about the Earth's moon formation and two of the "accepted" theories are described before the question. In addition, both theories explain in a certain way the reason why the Moon is predominantly composed of elements similar to those found on Earth.
However, both theories seem to be incomplete when trying to explain our Moon's origin.
<span> reason is that there is no land to slow down the wind. Also, wind is caused by differences in air pressure</span>
The solution needed is prepared as below
by use of the M1V1 =M2 V2 formula where
M1 = 2.25 L
v2 = 1.0M
M2 = 9.0 M
V2 =? l
make V2 the subject of the formula V2 =M1V1/M2
= 2.25 L x 1.0M/9.0 M = 0. 25 L
therefore the solution need 0.25 L of 9.0M H3PO4 and dilute it a final volume of 2.25 l