Answer:
b). silver (Ag)
Explanation:
If you look at the periodic table, you just need to look at the atomic number of the element, because the atomic number tells you how many protons there are in the nucleus of the element.
But do be careful because some periodic tables have the molar mass at the top left corner, but the one I use has the atomic number at the top left corner, so make sure you look for the atomic number and not the molar mass.
13.4 billion years is 3 times of the half-life, 4.47 billion years. So the Uranium-238 will go through three times of half decay. So the remain percentage will be 50%*50%*50%=12.5%.
C12H24O2 +17 O2-------->12CO2 + 12H2O
<h3>
Combustion:-</h3>
combustion is a chemical reaction that often involves the presence of oxygen and produces heat and light in the form of flames.
<h3>
Lauric acid:-</h3>
Lauric acid has a 12-carbon backbone and is a saturated medium-chain fatty acid. In addition to being a key component of coconut oil and palm kernel oil, lauric acid occurs naturally in a variety of plant and animal fats and oils.
White solid lauric acid has a little bay oil odour to it.
Lauric acid is a cheap, non-toxic, and easy-to-handle substance that is frequently employed in lab studies on melting-point depression. Because lauric acid is a solid at ambient temperature but a liquid at boiling temperatures, it can be used to test different solutes to determine their molecular weights.
To learn more about Fatty acids refer to :-
brainly.com/question/26353151
#SPJ10
Answer:
2.2 x 10²² molecules.
Explanation:
- Firstly, we need to calculate the no. of moles in (6.0 g) sodium phosphate:
<em>no. of moles = mass/molar mass </em>= (6.0 g)/(163.94 g/mol) = <em>0.0366 mol.</em>
- <em>It is known that every mole of a molecule contains Avogadro's number (6.022 x 10²³) of molecules.</em>
<em />
<u><em>using cross multiplication:</em></u>
1.0 mole of sodium phosphate contains → 6.022 x 10²³ molecules.
0.0366 mole of sodium phosphate contains → ??? molecules.
<em>∴ The no. of molecules in 6.0 g of sodium phosphate</em> = (6.022 x 10²³ molecules)(0.0366 mole)/(1.0 mole) = <em>2.2 x 10²² molecules.</em>
solution:
1000 = m*2400*(78-22) + m*8.79*10^5
1000= 134400m + 879000m
1000= 1030200m
m = 1000/1013400
m= 1013.4 grams
the final answer is 0.9706 grams