It will take 6.42 s for the ball that is dropped from a height of 206 m to reach the ground.
From the question given above, the following data were obtained:
Height (H) = 206 m
<h3>Time (t) =? </h3>
NOTE: Acceleration due to gravity (g) = 10 m/s²
The time taken for the ball to get to the ground can be obtained as follow:
H = ½gt²
206 = ½ × 10 × t²
206 = 5 × t²
Divide both side by 5

Take the square root of both side

<h3>t = 6.42 s</h3>
Therefore, it will take 6.42 s for the ball to get to the ground.
Learn more: brainly.com/question/24903556
Answer: 166.67km/hr
Explanation:
Given the following :
Distance traveled = 250km
Time taken = 1.5 hours
Recall :
Speed = Distance traveled / time taken
Speed = 250 km / 1.5 hours
Speed = 166. 67 km/hr
Speed in m/s:
166.67km/hr = (166.67 × 1000)m / 3600 s
= 166670m / 3600s
= 46.3m/s
No, because superconductivity cannot occur if there is resistance
In addition to explaining electrical resistance, equilibrium distance theory also foretells the existence of superconductivity. According to its postulates, electrical resistivity decreases with distance from the equilibrium. There is only superconductivity at zero distance, with no resistance
<h3>What is Superconductivity ?</h3>
The ability of some materials to transmit electric current with virtually little resistance is known as superconductivity.
- This ability has intriguing and maybe beneficial ramifications. Low temperatures are necessary for a material to exhibit superconductor behaviour. H. K. made the initial discovery of superconductivity in 1911.
- Aluminum, magnesium diboride, niobium, copper oxide, yttrium barium, and iron pnictides are a few well-known examples of superconductors.
Learn more about Superconductivity here:
brainly.com/question/17166152
#SPJ4
It's 60.... i have used the formula
L=r^2mw
and didn't use the value 0.75...
Answer: 0.031rad/s
Explanation:
Tangential speed = 50.0m/s
Diameter = 3200m
Radius = diameter/2
= 3200/2 = 1600m
Angular speed = tangential speed / radius
= 50/1600
= 0.031rad/s