Answer:
the answer is 2000Nm
Explanation:
wprk done = force × distance moved
w.d = 200N × 10m
w.d = 2000Nm
mark me as brainliest plyyzzz
Answer:
Explanation:
Moment of inertia of a disc = 1/2 M R²
Since mass is same for both and radius are r and 2r, their moment of inertia can be in the ratio of 1: 4 . Let them be I and 4I . Angular speed are ω₀ and - ω₀ .
We shall apply law of conservation of angular momentum .
initial total angular momentum
I x ω₀ - 4I x ω₀ = - 3Iω₀
Let final common angular momentum be ω
total final angular momentum = ( I + 4I ) ω
Applying law of conservation of angular momentum
( I + 4I ) ω = - 3Iω₀
ω = - 3 / 5 ω₀ .
b )
Initial total rotational K E
= 1/2 I ω₀² + 1/2 4I ω₀²
= 1/2 x5I ω₀²
Final total rotational K E
= 1/2 ( I + 4I ) ( - 3 / 5 ω₀ )²
= 1/2 x 9 / 5 I ω₀²
= 9 / 10I ω₀²
change in rotational kinetic energy = 9 / 10I ω₀² - 1/2 x5I ω₀²
(9/10 - 5/2) xI ω₀²
=( .9 - 2.5 )I ω₀²
= - 1.6 I ω₀² Ans
Your driving zone refers to the areas of space around your car, it refers to all the area around your car as far as your eyes can see.
Each car has seven zones numbered from 1 to 7. Driving zone 7 corresponds with THE SPACE YOUR VEHICLE IS OCCUPYING. The other zones are as follows:
zone 1 = area directly infront of your car
zone 2 = your left lane
zone 3 = your right lane
zone 4 = left rear of your car
zone 5 = right rear of your car
zone 6 = area directly behind your car.
<span />
Assuming the driver starts slamming the brakes immediately, the car moves by uniformly decelerated motion, so we can use the following relationship

(1)
where
a is the deleceration
S is the distance covered after a time t

is the velocity at time t

is the initial speed of the car
The accident is 80 m ahead of the car, so the minimum deceleration required to avoid the accident is the value of a such that S=80 m and

(the car should stop exactly at S=80 m to avoid the accident). Using these data, we can solve the equation (1) to find a:

And the negative sign means it is a deceleration.
Answer:
2.24 m/s
Explanation:
resolving force of 29.2 N in x component
Fx = 29.2 cos 57.7
Fx = 15.6N
as force of friction is 12.7 N hence net force which produces acceleration is
15.6-12.7=2.9 N
by Newton 's law a=f/m
a= 2.9/6.87=0.422 m/s^2
now equation of motion is
v^2= U^2+2as
= 0^2+2(.422)(5.93)
v^2=5.00
v=2.24 m/s