Answer:
"8 units" is the appropriate answer.
Explanation:
According to the question,
Throughout equilibrium all particles are of equivalent intensity, and as such the integrated platform's total energy has been uniformly divided across all individuals.
Now,
The total energy will be:
= 
= 
The total number of particles will be:
= 
= 
hence,
Energy of each A particle or each B particle will be:
= 
= 
Space telescopes must be placed in orbit around earth in order to observe short-wavelength radiation.
<h3>What is telescope?</h3>
A telescope is an optical instrument that uses lenses, curved mirrors, or a combination of both to watch distant objects.
When atoms in a gas reach this temperature, they travel so quickly that when they collide, they release X-ray photons with wavelengths smaller than 10 nanometers.
Because the Earth's atmosphere prevents all X-rays from space, these wavelengths must be seen using space telescopes.
To study short-wavelength radiation, space telescopes must be put in orbit around the Earth.
Hence, space telescope is the correct answer.
To learn more about the telescope, refer:
brainly.com/question/556195
#SPJ1
Answer:
F₁ = 4,120.2 N
F₂ = 3,924N
Explanation:
1) Balance of angular momentum around the end where F₁ is applied.
F₂ × 0.5m - F₁ × 0 = mass × g × 1m
⇒ F2 × 0.5 m= 20 kg × 9.81 m/s² × 1 m = 1,962 N×m
F₂ = 196.2 Nm / 0.5m = 3,924 N
2) Balance of forces
F₁ - F₂ = mg
F₁ = F₂ + mg = 3,924N + 20kg (9.81 m/s²) = 4,120.2 N
Answer:
Vf = 15 m/s
Explanation:
First we consider the upward motion of ball to find the height reached by the ball. Using 3rd equation of motion:
2gh = Vf² - Vi²
where,
g = acceleration due to gravity = -9.8 m/s² (negative sign for upward motion)
h = height =?
Vf = Final Velocity = 0 m/s (Since, ball momentarily stops at highest point)
Vi = Initial Velocity = 15 m/s
Therefore,
2(-9.8 m/s²)h = (0 m/s)² - (15 m/s)²
h = (-225 m²/s²)/(-19.6 m/s²)
h = 11.47 m
Now, we consider downward motion:
2gh = Vf² - Vi²
where,
g = acceleration due to gravity = 9.8 m/s²
h = height = 11.47 m
Vf = Final Velocity = ?
Vi = Initial Velocity = 0 m/s
Therefore,
2(9.8 m/s²)(11.47 m) = Vf² - (0 m/s)²
Vf = √(224.812 m²/s²)
<u>Vf = 15 m/s</u>
Answer:
0.833 N
Explanation:
Formula for Kinetic Energy 
Formula for Potential Energy 
First we need to find the vertical distance between the maximum-angle position and the pendulum lowest point:
Using the swinging point as the reference, the vertical distance from the maximum-angle (34 degree) position to the swinging point is:

At the lowest position, pendulum is at string length to the swinging point, which is 1.2 m. Therefore, the vertical distance between the maximum-angle position and the pendulum lowest point would be
y = 1.2 - 1 = 0.2 m.
As the pendulum is traveling from the maximum-angle position to the lowest point position, its potential energy would be converted to the kinetic energy.
By law of energy conservation:




Substitute
and y = 0.2 m:

At lowest point, pendulum would generate centripetal tension force on the string:

We can substitute mass m = 0.25, rotation radius L = 1.2 m and v = 2 m/s:
