Answer:
B) t = 1.83 [s]
A) y = 16.51 [m]
Explanation:
To solve this problem we must use the following equation of kinematics.

where:
Vf = final velocity = 0
Vo = initial velocity = 18 [m/s]
g = gravity acceleration = 9.81 [m/s²]
t = time [s]
Note: the negative sign in the above equation means that the acceleration of gravity is acting in the opposite direction to the motion.
A) The maximum height is reached when the final velocity of the ball is zero.
0 = 18 - (9.81*t)
9.81*t = 18
t = 18/9.81
t = 1.83 [s], we found the answer for B.
Now using the following equation.

where:
y = elevation [m]
Yo = initial elevation = 0
y = 18*(1.83) - 0.5*9.81*(1.83)²
y = 16.51 [m]
Answer:
Explanation:
Work
Other units Foot-pound, Erg
In SI base units 1 kg⋅m2⋅s−2
Derivations from other quantities W = F ⋅ s W = τ θ
Dimension M L2 T−2
Idk if this is what u are looking for but i hope this help.:)
Answer
D. move a small magnet back and forth within a section of the coiled wire.
Explanation:
i put that for the test and i got it right
Answer:
4=Conduction by convection by radiation.
Explanation:
Hope it will help you! It may be short but I don't know how to write it in blank aafai milayera lekha Hai blanks ma
From the given equation we can deduce what changes will occur if the frequency of the sound is doubled
V= f (λ)
Speed = frequency. Wavelength
When the frequency is doubled, speed will not change. Because speed depends on factors like temperature, air pressure, density of the gas. Since all these factors are unchanged thus speed will remain unchanged
Frequency is the number of waves produced per second. Frequency and wavelength are inversely proportional .Thus, if the frequency is doubled the wavelength would be halved.