1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liq [111]
3 years ago
13

A bullet fired into a fixed target loses half of its velocity after penetrating 3 cm. How much further it will penetrate before

coming to rest assuming that it faces constant resistance to motion​
Physics
1 answer:
Darina [25.2K]3 years ago
4 0

{\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{First \: penetrating \: length\:(s_{1}) = 3 \: cm}

\\

{\mathfrak{\underline{\purple{\:\:\:To \:Find:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Left \: Penetration \: length \: before  \: it \: comes \: to \: rest \:( s_{2} )}

\\

{\mathfrak{\underline{\purple{\:\:\: Calculation:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Let \: Initial \: velocity   = v\:m/s} \\\\

\:\:\:\:\bullet\:\:\:\sf{Left \: velocity \: after \:  s_{1} \: penetration =  \dfrac{v}{2}  \:m/s} \\\\

\:\:\:\:\bullet\:\:\:\sf{s_{1} =  \dfrac{3}{100}  = 0.03 \: m}

\\

☯ As we know that,

\\

\dashrightarrow\:\: \sf{ {v}^{2}  =  {u}^{2} + 2as }

\\

\dashrightarrow\:\: \sf{  \bigg(\dfrac{v}{2} \bigg)^{2}  =  {v}^{2}   + 2a s_{1}}

\\

\dashrightarrow\:\: \sf{  \dfrac{ {v}^{2} }{4}  =  {v}^{2}  + 2 \times a \times 0.03  }

\\

\dashrightarrow\:\: \sf{ \dfrac{ {v}^{2} }{4}  -  {v}^{2}  = 0.06 \times a  }

\\

\dashrightarrow\:\: \sf{\dfrac{ -  3{v}^{2} }{4}  = 0.06 \times a  }

\\

\dashrightarrow\:\: \sf{a =  \dfrac{ - 3 {v}^{2} }{4 \times 0.06}  }

\\

\dashrightarrow\:\: \sf{ a =  \dfrac{ - 25 {v}^{2} }{2}\:m/s^{2} ......(1) }

\\

\:\:\:\:\bullet\:\:\:\sf{  Initial\:velocity=v\:m/s} \\\\

\:\:\:\:\bullet\:\:\:\sf{ Final \: velocity = 0 \: m/s }

\\

\dashrightarrow\:\: \sf{  {v}^{2}  =  {u}^{2}  + 2as}

\\

\dashrightarrow\:\: \sf{{0}^{2}  =  {v}^{2}  + 2 \times  \dfrac{ - 25 {v}^{2} }{2}  \times s  }

\\

\dashrightarrow\:\: \sf{ -  {v}^{2}  =  - 25 {v}^{2}  \times s  }

\\

\dashrightarrow\:\: \sf{  s =  \dfrac{ -  {v}^{2} }{ - 25 {v}^{2} }}

\\

\dashrightarrow\:\: \sf{  s =  \dfrac{1}{25} }

\\

\dashrightarrow\:\: \sf{ s = 0.04 \: m }

\\

☯ For left penetration (s₂)

\\

\dashrightarrow\:\: \sf{s =  s_{1} +  s_{2}  }

\\

\dashrightarrow\:\: \sf{  0.04 = 0.03 +  s_{2}}

\\

\dashrightarrow\:\: \sf{ s_{2} = 0.04 - 0.03 }

\\

\dashrightarrow\:\: \sf{s_{2} = 0.01 \: m = {\boxed{\sf{\purple{1 \: cm }}} }}

\\

\star\:\sf{Left \: penetration \: before  \: it \: come \: to \: rest \: is \:{\bf{ 1 \: cm}}} \\

You might be interested in
Una bala calibre se deja caer desde el piso 84 (a una altura de 250 metros) La bala tiene una masa de 0,008 kg. ¿A qué velocidad
Vitek1552 [10]

Answer:

50

Explanation:

5 0
3 years ago
Two stones resembling diamonds are suspected of being fakes. To determine if the stones might be real, the mass and volume of ea
dimaraw [331]

Answer:

stone A is diamond.

Explanation:

given,

Volume of the two stone =  0.15 cm³

Mass of stone A = 0.52 g

Mass of stone B = 0.42 g

Density of the diamond =  3.5 g/cm³

So, to find which stone is gold we have to calculate the density of both the stone.

We know,

density\density = \dfrac{mass}{volume}

density of stone A

\rho_A = \dfrac{0.52}{0.15}

\rho_A = 3.467\ g/cm^3

density of stone B.

\rho_B = \dfrac{0.42}{0.15}

\rho_B = 2.8\ g/cm^3

Hence, the density of the stone A is the equal to Diamond then stone A is diamond.

6 0
3 years ago
A disk rotates around an axis through its center that is perpendicular to the plane of the disk. The disk has a line drawn on it
natka813 [3]

Answer:

t = \frac{\sqrt{\omega0^2+2*\theta*\alpha} -\omega0}{\alpha}

Explanation:

The rotated angle is given by:

\theta=\omega0*t+1/2*\alpha*t^2

Since this is a quadratic equation it can be solved using:

x=\frac{-b \± \sqrt{b^2-4*a*c}  }{2*a}

Rewriting our equation:

1/2*\alpha*t^2+\omega0*t-\theta=0

t = \frac{\±\sqrt{\omega0^2+2*\theta*\alpha} -\omega0}{\alpha}

Since \sqrt{\omega0^2+2*\theta*\alpha} >\omega0 we discard the negative solution.

t = \frac{\sqrt{\omega0^2+2*\theta*\alpha} -\omega0}{\alpha}

8 0
3 years ago
The force required to start an object sliding across a uniform horizontal surface is larger than the force required to keep the
taurus [48]

The force required to start an object sliding across a uniform horizontal surface is larger than the force required to keep the object sliding at a constant velocity once it starts.

The magnitudes of the required forces are different in these situations because the force of kinetic friction is less than the force of static friction. <em>(d)</em>

3 0
3 years ago
2. A volleyball player strikes a 3 kg volleyball with a velocity of 14 m/s. What is the kinetic energy of the volleyball?
Effectus [21]

Answer:

2. 294 j

3. 37500 J

Explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • 10. The energy of moving objects is called
    5·2 answers
  • A wooden log of density 2g/cm3 and volume 50 cm3 fall on the surface of water. Calculate its buoyant force.
    14·1 answer
  • In interpersonal attraction, the phrase “Birds of a feather flock together” is more accurate than “Opposites attract.”
    10·2 answers
  • The amount of a good or service a
    10·1 answer
  • The pressure of the earth's atmosphere at sea level is 14.7 lb/in2. What is the pressure when expressed in g/m2? (2.54 cm = 1 in
    8·1 answer
  • From the edge of a cliff, a 0.46 kg projectile is launched with an initial kinetic energy of 1430 J. The projectile's maximum up
    15·1 answer
  • If
    8·1 answer
  • 1. How does the structure of a hard-boiled egg compare to the crust, mantle, and core structure of Earth? What do the egg's laye
    8·2 answers
  • What is types of motion ​
    13·2 answers
  • Friction is defined as *
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!