Answer:
19.08 m/s
Explanation:
f = actual frequency emitted by the parked car's horn = 440 Hz
V = speed of sound = 342 m/s
f' = frequency of the horn observed by you = 466 Hz
v = speed of your car moving towards the parked car = ?
frequency of the horn observed by you is given as


v = 19.08 m/s
Hey mate
Here is your answer
Option A)
Explanation:
The larger the amplitude of the waves, the louder the sound. Pitch (frequency) – shown by the spacing of the waves displayed. The closer together the waves are, the higher the pitch of the sound.
Pls mark as brainliest
Answer:
High density D answers to your questions
Answer:
<h3>The answer is 50 N</h3>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
<h3>force = mass × acceleration</h3>
From the question we have
force = 10 × 5
We have the final answer as
<h3>50 N</h3>
Hope this helps you
<span>The momentum of the falcon before collision is 0.6 * 20 = 12000 kgm/s which is actually the momenum of the falcon in the x-component. I had converted 600g to kg. After the collision the x-component of the raven is now mv2cos(thetha) where v2 is the final velocity of the raven and theta is the angle at which the falcon hits the raven. So we have that the falcon's final velocity = 600 * 5 * cos (theta). Likewise, after getting hit the the falcon, the raven's final momentum of is = m2v2cos(theta) = 1.5 * 9 * cos(theta). There's no motion along the y-components. So equating we have, momentum before collision = momentum after collision of the raven + momentum after collision of the falcon.
So we have 12000 = 3000cos(theta) + 13.5cos(theta). Cos(theta)(3000 + 13.5) = 12000. Theta = cos^-1( 12000/3013.5 = 3.98 So theta =</span>