Answer:
0.185M sulfuric acid
Explanation:
Based on the reaction:
H₂SO₄ + 2KOH → K₂SO₄ + 2H₂O
<em>1 mole of sulfuric acid reacts with 2 moles of KOH</em>
Initial moles of H₂SO₄ and KOH are:
H₂SO₄: 0.750L ₓ (0.470mol / L) = <em>0.3525 moles of H₂SO₄</em>
KOH: 0.700L ₓ (0.240mol / L) = <em>0.168 moles of KOH</em>
The moles of sulfuric acis that react with KOH are:
0.168mol KOH ₓ (1 mole H₂SO₄ / 2 moles KOH) = 0.0840 moles of sulfuric acid.
Thus, moles that remain are:
0.3525moles - 0.0840 moles = <em>0.2685 moles of sulfuric acid remains</em>
As total volume is 0.700L + 0.750L = 1.450L, concentration is:
0.2685mol / 1.450L = <em>0.185M sulfuric acid</em>
Answer:
B: Adding water, then adding solute
Explanation:
This is because, say you have a solution with a certain concentration.
If you add more water, it will become more diluted (less concentrated)
If you add more solute, it will become more concentrated.
Therefore if you add water and solute, it could cancel out, and the concentration would remain the same.
Hope this helps! Let me know if you have any questions/ would like anything further explained :)
Answer:
The final volume when pressure is changed is 126.1mL
Explanation:
Based on Boyle's law, in a gas the volume is inversely proportional to its pressure when temperature remains constant. The equation is:
P₁V₁ = P₂V₂
<em>Where P is pressure and V volume of 1, intial state and 2, final state.</em>
<em />
Computing the values of the problem:
350mmHg*200mL = 555mmHgV₂
126.1mmHg = V₂
<h3>The final volume when pressure is changed is 126.1mL</h3>
Most likely it’s crystalline structure, which makes it small granules that are soluble in water. Most, if not all, ionic compounds are salts. And salts dissolve in water.
Hope that’s correct
Answer:
0.071 mole
Explanation:
As discovered from Avogadro's hypothesis, 1 mole of any substance contains 6.02x10^23 molecules.
This simply means that 1 mole of H3PO4 also contains 6.02x10^23 molecules.
If 1 mole H3PO4 contains 6.02x10^23 molecules,
Then, xmol of H3PO4 will contain 4.3x10^22 molecules i.e
Xmol of H3PO4 = 4.3x10^22/6.02x10^23 = 0.071 mole
From the calculations made above, 4.3x10^22 molecules of H3PO4 have 0.071 mole of H3PO4