Answer:
The percentage yield is 78.2g
Explanation:
Given, mass of propane = 42.8 g , sufficient O2 percent yield = 61.0 % yield.
Reaction - C3H8(g)+5O2(g)------> 3CO2(g)+4H2O(g)
First we need to calculate the moles of propane
Moles of propane =
g.mol-1
= 0.971 moles
So, moles of CO2 from the moles of propane
1 mole of C3H8(g) = 3 moles of CO2(g)
So, 0.971 moles of C3H8(g) = ?
= 2.913 moles of CO2
So theoretical yield = 2.913 moles
44.0 g/mol
= 128.2 g
So, the actual mass of CO2 = percent yield
theoretical yield / 100 %
= 61.0 %
128.2 g / 100 %
= 78.2 g
the mass of CO2 that can be produced if the reaction of 42.8 g of propane and sufficient oxygen has a 61.0 % yield is 78.2 g
Traveling upwards of 200 mph or 320 km/h, and accelerating in a matter of seconds, germs from a cough or sneeze can travel a great distance very quickly.
Hi!
The best possible name for this molecule would be: 4 - ethyl - 1 - heptene or 4 - ethylhept - 1 - ene
We always name the molecule with respect to the longest chain (in a branched molecule), taking both atoms of carbon participating in the double bond into account too. In our case, this gives us a 7 Carbon chain - hept
ene - is the suffix that is indicative of the molecule being an alekene.
<em>So we know it is a branched heptene molecule</em>
We add the number where the double bond occurs either before ene, or before heptene as a rule.
<em>Note: We always start with the end of the chain from where the double bond is the closest, and number the carbons accordingly.</em>
The title and position of the branch always comes at the start. In our case the branch is a two carbon chain, and an alkane, so it would be an ethyl branch. This branch occurs at carbon number 4
Hence, the correct names would be:
<em>4 - ethyl - 1 - heptene</em> or <em>4 - ethylhept - 1 - ene</em>
Hope this helps!
The Nernst equation allows us to predict the cell potential for voltaic cells under conditions other than the standard conditions of 1M, 1 atm, 25°C. The effects of different temperatures and concentrations may be tracked in terms of the Gibbs energy change ΔG. This free energy change depends upon the temperature & concentrations according to ΔG = ΔG° + RTInQ where ΔG° is the free energy change under conditions and Q is the thermodynamic reaction quotient. The free energy change is related to the cell potential Ecell by ΔG= nFEcell
so for non-standard conditions
-nFEcell = -nFE°cell + RT InQ
or
Ecell = E°cell - RT/nF (InQ)
which is called Nernst equation.
Answer:
It might cave in on itself or collapse because of the change in pressure.