-----------------------------------------------
Information Given:
-----------------------------------------------
ON = 7x - 9
LM = 6x + 4
MN = x - 7
OL = 2y - 7
-----------------------------------------------
Since it is a parallelogram:
-----------------------------------------------
ON = LM and
MN = OL
-----------------------------------------------
ON = LM:
-----------------------------------------------
7x - 9 = 6x + 4
-----------------------------------------------
Subtract 6x from both sides:
-----------------------------------------------
x - 9 = 4
-----------------------------------------------
Add 9 to both sides:
-----------------------------------------------
x = 13
-----------------------------------------------
MN = OL:
-----------------------------------------------
x - 7 = 2y - 7
-----------------------------------------------
Sub x = 13:
-----------------------------------------------
13 - 7 = 2y - 7
-----------------------------------------------
Simplify:
-----------------------------------------------
6 = 2y - 7
-----------------------------------------------
Add 7 on both sides:
-----------------------------------------------
13 = 2y
-----------------------------------------------
Divide by 2:
-----------------------------------------------
y = 13/2
-----------------------------------------------
Answer: x = 13, y = 13/2 (Answer D)
-----------------------------------------------
Answer:
Step-by-step explanation:
for the first one it's (x + 5) x (x - 7)
second one it's (x + 5) x (x + 7)
third one is (x - 5) x ( x + 7)
fourth one is (x -5) x (x - 7)
thats the answer
Answer:
Sorry i need points to ask a question sorry dont report pos
Step-by-step explanation:
I believe the answer is A
Answer:
slope =0
Step-by-step explanation:
Given that the vertices of a rectangle in the standard (x,y) coordinate plane are (0,0), (0,4), (7,0), and (7,4).
The rectangle has length = 7 and width =4
We know rectangle has two lines of symmetry which are i) vertical line through mid point ii) Horizontal line through mid point
Since the line passes through (2,2) we have the line as middle line.
Hence the required line is
Slope of the line =0